skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Nonequilibrium molecular dynamics study of shear and shear-free flows in simple fluids

Journal Article · · Journal of Chemical Physics
DOI:https://doi.org/10.1063/1.469925· OSTI ID:146695
;  [1]
  1. Department of Chemical Engineering, University of Tennessee, Knoxville, Tennessee 37996-2200 (United States)

Nonequilibrium molecular dynamics simulations have been performed in order to compare the characteristics of planar Couette, planar elongation, uniaxial stretching, and biaxial stretching flows in simple fluids at different strain rates. After deriving the periodic boundary conditions for general flow fields and introducing some methodological improvements for elongation flow calculations we simulated the combination of shear and shear-free flows as well. We found that even at high strain rates where simple fluids exhibit strong non-Newtonian behavior (shear-thinning) it is a reasonable approximation to consider the two planar flows to be rotationally equivalent. This is because in planar Couette flow the in-plane normal stress difference of simple fluids is approximately zero even far from equilibrium. Similarly to planar Couette flow, the trace of the pressure tensor and the internal energy vary approximately as function of the 3/2 power of the strain rate in shear free flows. However, the individual diagonal elements of elongation flow pressure tensors deviate considerably from this approximation. In the extension direction the pressure seems to have a minimum in terms of the strain rate in every shear-free flow. We have discussed the implications of these results. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.

OSTI ID:
146695
Journal Information:
Journal of Chemical Physics, Vol. 103, Issue 23; Other Information: PBD: 15 Dec 1995
Country of Publication:
United States
Language:
English