The one-dimensional camelback potential in the parallel dipole line trap: Stability conditions and finite size effect
Journal Article
·
· Journal of Applied Physics
- IBM T. J. Watson Research Center, Yorktown Heights, NY (United States); IBM
- IBM T. J. Watson Research Center, Yorktown Heights, NY (United States)
We recently demonstrated a magnetic parallel dipole line (PDL) system that serves as a unique diamagnetic trap with a fascinating one-dimensional camelback potential along its longitudinal axis. The system can be realized with a pair of transversely magnetized cylindrical magnets and a cylindrical graphite rod as the trapped object. In this paper, we present more detailed experimental and theoretical studies of the finite size effect of the rod and its impact on the stability and oscillation dynamics of the trap. We show that the camelback potential effect only occurs when the length of the PDL system is beyond certain critical length (LC). The length of the trapped rod determines the “effective camelback potential” and is subject to maximum and minimum values for the trap to be stable. Both length and radius of the rod determine the damping dynamics or the quality factor of the oscillator. Finally, these characteristics are important for designing the PDL trap system for various sensing applications, for example, we demonstrated a PDL trap gas viscometer system through measurement of the oscillation damping time constant.
- Research Organization:
- IBM T. J. Watson Research Center, Yorktown Heights, NY (United States)
- Sponsoring Organization:
- USDOE Advanced Research Projects Agency - Energy (ARPA-E)
- Grant/Contract Number:
- AR0000540
- OSTI ID:
- 1465332
- Alternate ID(s):
- OSTI ID: 1993649
- Journal Information:
- Journal of Applied Physics, Journal Name: Journal of Applied Physics Journal Issue: 13 Vol. 121; ISSN 0021-8979
- Publisher:
- American Institute of Physics (AIP)Copyright Statement
- Country of Publication:
- United States
- Language:
- English
Carrier-resolved photo-Hall effect
|
journal | October 2019 |
Similar Records
A single trapped ion in a finite range trap
Chaotic motion of a single charged particle in a nonlinear Penning trap
Journal Article
·
Fri Apr 15 00:00:00 EDT 2011
· Annals of Physics (New York)
·
OSTI ID:21579873
Chaotic motion of a single charged particle in a nonlinear Penning trap
Thesis/Dissertation
·
Tue Dec 31 23:00:00 EST 1991
·
OSTI ID:6972148