skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Neutron-hole states in 131Sn and spin-orbit splitting in neutron-rich nuclei

Journal Article · · Physics Letters B

In atomic nuclei, the spin-orbit interaction originates from the coupling of the orbital motion of a nucleon with its intrinsic spin. Recent experimental and theoretical works have suggested a weakening of the spin-orbit interaction in neutron-rich nuclei far from stability. To study this phenomenon, we have investigated the spin-orbit energy splittings of single-hole and single-particle valence neutron orbits of 132Sn. The spectroscopic strength of single-hole states in 131Sn was determined from the measured differential cross sections of the tritons from the neutron-removing 132Sn(d, t)131Sn reaction, which was studied in inverse kinematics at the Holifield Radioactive Ion Beam Facility at Oak Ridge National Laboratory. The spectroscopic factors of the lowest 3/2+, 1/2+ and 5/2+ states were found to be consistent with their maximal values of (2j + 1) , confirming the robust shell closure at 132Sn. We compared the spin-orbit splitting of neutron single-hole states in 131Sn to those of single-particle states in 133Sn determined in a recent measurement of the 132Sn(d, p)133Sn reaction. We found a significant reduction of the energy splitting of the weakly bound 3p orbits compared to the well-bound 2d orbits, and that all the observed energy splittings can be reproduced remarkably well by calculations using a one-body spin-orbit interaction and a Woods–Saxon potential of standard radius and diffuseness. The observed reduction of spin-orbit splitting can be explained by the extended radial wavefunctions of the weakly bound orbits, without invoking a weakening of the spin-orbit strength.

Research Organization:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Sponsoring Organization:
USDOE National Nuclear Security Administration (NNSA)
Grant/Contract Number:
AC05-00OR22725; FG52-08NA28552; SC0001174; FG02-96ER40963; FG02-96ER40955; NA0002132
OSTI ID:
1463203
Alternate ID(s):
OSTI ID: 1495976
Journal Information:
Physics Letters B, Journal Name: Physics Letters B Vol. 785 Journal Issue: C; ISSN 0370-2693
Publisher:
ElsevierCopyright Statement
Country of Publication:
Netherlands
Language:
English
Citation Metrics:
Cited by: 6 works
Citation information provided by
Web of Science

Cited By (1)

Experimental study of intruder components in light neutron-rich nuclei via single-nucleon transfer reaction journal February 2020

Figures / Tables (5)