skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Simplex ACE: a constrained subspace detector

Abstract

In hyperspectral target detection, one must contend with variability in both target materials and background clutter. While most algorithms focus on the background clutter, there are some materials for which there is substantial variability in the signatures of the target. When multiple signatures can be used to describe a target material, subspace detectors are often the detection algorithm of choice. However, as the number of variable target spectra increases, so does the size of the target subspace spanned by these spectra, which in turn increases the number of false alarms. Here in this paper, we propose a modification to this approach, wherein the target subspace is instead a constrained subspace, or a simplex without the sum-to-one constraint. We derive the simplex adaptive matched filter (simplex AMF) and the simplex adaptive cosine estimator (simplex ACE), which are constrained basis adaptations of the traditional subspace AMF and subspace ACE detectors. We present results using simplex AMF and simplex ACE for variable targets, and compare their performances against their subspace counterparts. Our primary interest is in the simplex ACE detector, and as such, the experiments herein seek to evaluate the robustness of simplex ACE, with simplex AMF included for comparison. Results are shownmore » on hyperspectral images using both implanted and ground-truthed targets, and demonstrate the robustness of simplex ACE to target variability.« less

Authors:
ORCiD logo [1]; ORCiD logo [1]
  1. Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Publication Date:
Research Org.:
Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA)
OSTI Identifier:
1460642
Report Number(s):
LA-UR-17-21174
Journal ID: ISSN 0091-3286
Grant/Contract Number:  
AC52-06NA25396
Resource Type:
Journal Article: Accepted Manuscript
Journal Name:
Optical Engineering
Additional Journal Information:
Journal Volume: 56; Journal Issue: 8; Journal ID: ISSN 0091-3286
Publisher:
SPIE
Country of Publication:
United States
Language:
English
Subject:
42 ENGINEERING; hyperspectral; target detection; target variability; adaptive cosine estimator; simplex ACE; subspace ACE

Citation Formats

Ziemann, Amanda, and Theiler, James Patrick. Simplex ACE: a constrained subspace detector. United States: N. p., 2017. Web. doi:10.1117/1.OE.56.8.081808.
Ziemann, Amanda, & Theiler, James Patrick. Simplex ACE: a constrained subspace detector. United States. doi:10.1117/1.OE.56.8.081808.
Ziemann, Amanda, and Theiler, James Patrick. Thu . "Simplex ACE: a constrained subspace detector". United States. doi:10.1117/1.OE.56.8.081808. https://www.osti.gov/servlets/purl/1460642.
@article{osti_1460642,
title = {Simplex ACE: a constrained subspace detector},
author = {Ziemann, Amanda and Theiler, James Patrick},
abstractNote = {In hyperspectral target detection, one must contend with variability in both target materials and background clutter. While most algorithms focus on the background clutter, there are some materials for which there is substantial variability in the signatures of the target. When multiple signatures can be used to describe a target material, subspace detectors are often the detection algorithm of choice. However, as the number of variable target spectra increases, so does the size of the target subspace spanned by these spectra, which in turn increases the number of false alarms. Here in this paper, we propose a modification to this approach, wherein the target subspace is instead a constrained subspace, or a simplex without the sum-to-one constraint. We derive the simplex adaptive matched filter (simplex AMF) and the simplex adaptive cosine estimator (simplex ACE), which are constrained basis adaptations of the traditional subspace AMF and subspace ACE detectors. We present results using simplex AMF and simplex ACE for variable targets, and compare their performances against their subspace counterparts. Our primary interest is in the simplex ACE detector, and as such, the experiments herein seek to evaluate the robustness of simplex ACE, with simplex AMF included for comparison. Results are shown on hyperspectral images using both implanted and ground-truthed targets, and demonstrate the robustness of simplex ACE to target variability.},
doi = {10.1117/1.OE.56.8.081808},
journal = {Optical Engineering},
issn = {0091-3286},
number = 8,
volume = 56,
place = {United States},
year = {2017},
month = {6}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 4 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Hyperspectral target detection in a whitened space utilizing forward modeling concepts
conference, June 2010

  • Ientilucci, Emmett J.; Bajorski, Peter
  • 2010 2nd Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS)
  • DOI: 10.1109/whispers.2010.5594939

Determination of trace-gas amounts in plumes by the use of orthogonal digital filtering of thermal-emission spectra
journal, January 1996

  • Hayden, Andreas; Niple, Edward; Boyce, Bruce
  • Applied Optics, Vol. 35, Issue 16
  • DOI: 10.1364/ao.35.002802

An Overview of Background Modeling for Detection of Targets and Anomalies in Hyperspectral Remotely Sensed Imagery
journal, June 2014

  • Matteoli, Stefania; Diani, Marco; Theiler, James
  • IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Vol. 7, Issue 6
  • DOI: 10.1109/jstars.2014.2315772

A hybrid algorithm for subpixel detection in hyperspectral imagery
conference, January 2004

  • Joshua Broadwater, Reuven Meth
  • IEEE International IEEE International IEEE International Geoscience and Remote Sensing Symposium, 2004. IGARSS '04. Proceedings. 2004
  • DOI: 10.1109/igarss.2004.1370633

SpecTIR hyperspectral airborne Rochester experiment data collection campaign
conference, May 2012

  • Herweg, Jared A.; Kerekes, John P.; Weatherbee, Oliver
  • SPIE Defense, Security, and Sensing, SPIE Proceedings
  • DOI: 10.1117/12.919268

The SHARE 2012 data campaign
conference, May 2013

  • Giannandrea, AnneMarie; Raqueno, Nina; Messinger, David W.
  • SPIE Defense, Security, and Sensing, SPIE Proceedings
  • DOI: 10.1117/12.2015935

Performance of an adaptive detection algorithm; rejection of unwanted signals
journal, March 1989

  • Kelly, E. J.
  • IEEE Transactions on Aerospace and Electronic Systems, Vol. 25, Issue 2
  • DOI: 10.1109/7.18674

Elliptically Contoured Distributions for Anomalous Change Detection in Hyperspectral Imagery
journal, April 2010

  • Theiler, James; Scovel, Clint; Wohlberg, Brendt
  • IEEE Geoscience and Remote Sensing Letters, Vol. 7, Issue 2
  • DOI: 10.1109/lgrs.2009.2032565

High-speed atmospheric correction for spectral image processing
conference, May 2012

  • Perkins, Timothy; Adler-Golden, Steven; Cappelaere, Patrice
  • SPIE Defense, Security, and Sensing, SPIE Proceedings
  • DOI: 10.1117/12.918908

The adaptive coherence estimator: a uniformly most-powerful-invariant adaptive detection statistic
journal, February 2005

  • Kraut, S.; Scharf, L. L.; Butler, R. W.
  • IEEE Transactions on Signal Processing, Vol. 53, Issue 2
  • DOI: 10.1109/tsp.2004.840823

Unsupervised methods for the classification of hyperspectral images with low spatial resolution
journal, June 2013


Infrared hyperspectral imaging results from vapor plume experiments
conference, June 1995

  • Bennett, Charles L.; Carter, Michael R.; Fields, David J.
  • SPIE's 1995 Symposium on OE/Aerospace Sensing and Dual Use Photonics, SPIE Proceedings
  • DOI: 10.1117/12.210897

Hyperspectral Detection and Identification with Constrained Target Subspaces
conference, July 2008

  • Adler-Golden, S.; Gruninger, J.; Sundberg, R.
  • IGARSS 2008 - 2008 IEEE International Geoscience and Remote Sensing Symposium
  • DOI: 10.1109/igarss.2008.4779029

Characterizing non-Gaussian clutter and detecting weak gaseous plumes in hyperspectral imagery
conference, June 2005

  • Theiler, James; Foy, Bernard R.; Fraser, Andrew M.
  • Defense and Security, SPIE Proceedings
  • DOI: 10.1117/12.604075

Local spectral unmixing for target detection
conference, March 2016


Metrics of spectral image complexity with application to large area search
journal, March 2012


Detection Algorithms in Hyperspectral Imaging Systems: An Overview of Practical Algorithms
journal, January 2014

  • Manolakis, Dimitris; Truslow, Eric; Pieper, Michael
  • IEEE Signal Processing Magazine, Vol. 31, Issue 1
  • DOI: 10.1109/msp.2013.2278915

Survey of geometric and statistical unmixing algorithms for hyperspectral images
conference, June 2010

  • Parente, Mario; Plaza, Antonio
  • 2010 2nd Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS)
  • DOI: 10.1109/whispers.2010.5594929

Spectral subspace matched filtering
conference, August 2001

  • Schaum, Alan P.
  • Aerospace/Defense Sensing, Simulation, and Controls, SPIE Proceedings
  • DOI: 10.1117/12.436996

Hyperspectral detection and discrimination using the ACE algorithm
conference, September 2011

  • Pieper, M. L.; Manolakis, D.; Lockwood, R.
  • SPIE Optical Engineering + Applications, SPIE Proceedings
  • DOI: 10.1117/12.893950

Very High Resolution Multiangle Urban Classification Analysis
journal, April 2012

  • Longbotham, Nathan; Chaapel, Chuck; Bleiler, Laurence
  • IEEE Transactions on Geoscience and Remote Sensing, Vol. 50, Issue 4
  • DOI: 10.1109/tgrs.2011.2165548

A CFAR adaptive matched filter detector
journal, January 1992

  • Robey, F. C.; Fuhrmann, D. R.; Kelly, E. J.
  • IEEE Transactions on Aerospace and Electronic Systems, Vol. 28, Issue 1
  • DOI: 10.1109/7.135446

Graph-based and statistical approaches for detecting spectrally variable target materials
conference, May 2016

  • Ziemann, Amanda K.; Theiler, James
  • SPIE Defense + Security, SPIE Proceedings
  • DOI: 10.1117/12.2224091

Right spectrum in the wrong place: a framework for local hyperspectral anomaly detection
journal, February 2016


Rapid Convergence Rate in Adaptive Arrays
journal, November 1974

  • Reed, I. S.; Mallett, J. D.; Brennan, L. E.
  • IEEE Transactions on Aerospace and Electronic Systems, Vol. AES-10, Issue 6
  • DOI: 10.1109/taes.1974.307893

Matched subspace detectors
journal, January 1994

  • Scharf, L. L.; Friedlander, B.
  • IEEE Transactions on Signal Processing, Vol. 42, Issue 8
  • DOI: 10.1109/78.301849

Hybrid Detectors for Subpixel Targets
journal, November 2007

  • Broadwater, Joshua; Chellappa, Rama
  • IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 29, Issue 11
  • DOI: 10.1109/tpami.2007.1104

Enough with the additive target model
conference, June 2014


Target detection assessment of the SHARE 2010/2012 hyperspectral data collection campaign
conference, May 2015


An adaptive locally linear embedding manifold learning approach for hyperspectral target detection
conference, May 2015

  • Ziemann, Amanda K.; Messinger, David W.
  • SPIE Defense + Security, SPIE Proceedings
  • DOI: 10.1117/12.2177466

Strategies for Hyperspectral Target Detection In Complex Background Environments
conference, January 2006


Iterative convex hull volume estimation in hyperspectral imagery for change detection
conference, April 2010

  • Ziemann, Amanda K.; Messinger, David W.; Basener, William F.
  • SPIE Defense, Security, and Sensing, SPIE Proceedings
  • DOI: 10.1117/12.850122

Invariant subpixel material detection in hyperspectral imagery
journal, March 2002


Local background estimation and the replacement target model
conference, May 2017

  • Theiler, James; Ziemann, Amanda
  • SPIE Defense + Security, SPIE Proceedings
  • DOI: 10.1117/12.2262833

Improved covariance matrices for point target detection in hyperspectral data
journal, July 2008


Operational and Performance Considerations of Radiative-Transfer Modeling in Hyperspectral Target Detection
journal, April 2011

  • Matteoli, Stefania; Ientilucci, Emmett J.; Kerekes, John P.
  • IEEE Transactions on Geoscience and Remote Sensing, Vol. 49, Issue 4
  • DOI: 10.1109/tgrs.2010.2081371

Continuum fusion: a theory of inference, with applications to hyperspectral detection
journal, January 2010


A parametric study of unsupervised anomaly detection performance in maritime imagery using manifold learning techniques
conference, May 2016

  • Olson, C. C.; Doster, T.
  • SPIE Defense + Security, SPIE Proceedings
  • DOI: 10.1117/12.2227226

Quantitative reflectance spectra of solid powders as a function of particle size
journal, January 2015

  • Myers, Tanya L.; Brauer, Carolyn S.; Su, Yin-Fong
  • Applied Optics, Vol. 54, Issue 15
  • DOI: 10.1364/AO.54.004863

Adaptive matched subspace detectors and adaptive coherence estimators
conference, January 1997

  • Scharf, L. L.; McWhorter, L. T.
  • Conference Record of The Thirtieth Asilomar Conference on Signals, Systems and Computers
  • DOI: 10.1109/ACSSC.1996.599116

Hyperspectral Unmixing Overview: Geometrical, Statistical, and Sparse Regression-Based Approaches
journal, April 2012

  • Bioucas-Dias, José M.; Plaza, Antonio; Dobigeon, Nicolas
  • IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Vol. 5, Issue 2
  • DOI: 10.1109/JSTARS.2012.2194696

Development of a Web-Based Application to Evaluate Target Finding Algorithms
conference, July 2008

  • Snyder, D.; Kerekes, J.; Fairweather, I.
  • IGARSS 2008 - 2008 IEEE International Geoscience and Remote Sensing Symposium
  • DOI: 10.1109/IGARSS.2008.4779144