skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: NMR Methodologies for the Detection and Quantification of Nanostructural Defects in Silicone Networks

Journal Article · · Macromolecules

Here, we present and discuss a sensitive spectroscopic means of detecting and quantifying network defects within a series of polysiloxane elastomers through a novel application of 19F solution state nuclear magnetic resonance (NMR). Polysiloxanes are the most utilized non-carbon polymeric material today. Their final network structure is complex, hierarchical, and often ill-defined due to modification. Characterization of these materials with respect to starting and age-dependent network structure is obfuscated by the intractable nature of polysiloxane network elastomers. We report a synthetic strategy for selectively tagging chain-end silanols with an organofluorine compound, which may then be conveniently and quantitatively measured as a function of structure and environment by means of 19F NMR. This study represents a new and sensitive means of directly quantifying aspects of network architecture in polysiloxane materials and has the potential to be a powerful new tool for the spectroscopic assessment of structural dynamic response in polysiloxane networks.

Research Organization:
Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Sponsoring Organization:
USDOE National Nuclear Security Administration (NNSA)
Grant/Contract Number:
AC52-07NA27344
OSTI ID:
1460072
Report Number(s):
LLNL-JRNL-737499; 890349; TRN: US1901831
Journal Information:
Macromolecules, Vol. 51, Issue 5; ISSN 0024-9297
Publisher:
American Chemical SocietyCopyright Statement
Country of Publication:
United States
Language:
English
Citation Metrics:
Cited by: 5 works
Citation information provided by
Web of Science

Figures / Tables (12)