From early prophylaxis to delayed treatment: Establishing the plutonium decorporation activity window of hydroxypyridinonate chelating agents
Journal Article
·
· Chemico-Biological Interactions
- Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Chemical Sciences Division
The potential consequences of a major radiological event are not only large-scale external radiation exposure of the population, but also uncontrolled dissemination of, and internal contamination with, radionuclides. When planning an emergency response to radiological and nuclear incidents, one must consider the need for not only post-exposure treatment for contaminated individuals, but also prophylactic measures to protect the workforce facing contaminated areas and patients in the aftermath of such events. In addition to meeting the desired criteria for post-exposure treatments such as safety, ease of administration, and broad-spectrum efficacy against multiple radionuclides and levels of challenge, ideal prophylactic countermeasures must include rapid onset; induce minimal to no performance-decrementing side effects; be compatible with current military Chemical, Biological, Radiological, Nuclear, and Explosive countermeasures; and require minimal logistical burdens. Hydroxypyridinone-based actinide decorporation agents have shown the most promise as decorporation strategies for various radionuclides of concern, including the actinides plutonium and americium. The studies here probe the extent of plutonium decorporation efficacy for two chelating agents, 3,4,3-LI(1,2-HOPO) and 5-LIO(Me-3,2-HOPO), from early pre-exposure time points to a delay of up to 7 days in parenteral or oral treatment administration, i.e., well beyond the initial hours of emergency response. Despite delayed treatment after a contamination event, both ligands clearly enhanced plutonium elimination through the investigated 7-day post-treatment period. In addition, a remarkable prophylactic efficacy was revealed for 3,4,3-LI(1,2-HOPO) with treatment as early as 48 h before the plutonium challenge. This work provides new perspectives in the indication and use of experimental actinide decorporation treatments.
- Research Organization:
- Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)
- Sponsoring Organization:
- National Inst. of Health (NIH); SC-22.1 USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22). Chemical Sciences, Geosciences & Biosciences Division
- Grant/Contract Number:
- AC02-05CH11231
- OSTI ID:
- 1458488
- Alternate ID(s):
- OSTI ID: 1397624
- Journal Information:
- Chemico-Biological Interactions, Journal Name: Chemico-Biological Interactions Journal Issue: C Vol. 267; ISSN 0009-2797
- Publisher:
- ElsevierCopyright Statement
- Country of Publication:
- United States
- Language:
- English
Similar Records
A Murine Model of Radionuclide Lung Contamination for the Evaluation of Americium Decorporation Treatments
Biomimetic Actinide Chelators: An Update on the Preclinical Development of the Orally Active Hydroxypyridonate Decorporation Agents 3,4,3-LI(1,2-HOPO) and 5-LIO(Me-3,2-HOPO)
Chelating agents for uranium(IV): 2. Efficacy and toxicity of tetradentate catecholate and hydroxypyridinonate ligands in mice
Journal Article
·
Sat May 31 20:00:00 EDT 2025
· Radiation Research
·
OSTI ID:2572722
Biomimetic Actinide Chelators: An Update on the Preclinical Development of the Orally Active Hydroxypyridonate Decorporation Agents 3,4,3-LI(1,2-HOPO) and 5-LIO(Me-3,2-HOPO)
Journal Article
·
Wed Jul 13 00:00:00 EDT 2011
· Health Physics
·
OSTI ID:1048305
Chelating agents for uranium(IV): 2. Efficacy and toxicity of tetradentate catecholate and hydroxypyridinonate ligands in mice
Journal Article
·
Mon May 01 00:00:00 EDT 2000
· Health Physics
·
OSTI ID:20075780