Techno-Economic Assessment for Integrating Biosorption into Rare Earth Recovery Process
- Lawrence Livermore National Laboratory
The current uncertainty in the global supply of rare earth elements (REEs) necessitates the development of novel extraction technologies that utilize a variety of REE source materials. Herein, we examined the techno-economic performance of integrating a biosorption approach into a large-scale process for producing salable total rare earth oxides (TREOs) from various feedstocks. An airlift bioractor is proposed to carry out a biosorption process mediated by bioengineered rare earth-adsorbing bacteria. Techno-econmic asssements were compared for three distinctive categories of REE feedstocks requiring different pre-processing steps. Key parameters identified that affect profitability include REE concentration, composition of the feedstock, and costs of feedstock pretreatment and waste management. Among the 11 specific feedstocks investigated, coal ash from the Appalachian Basin was projected to be the most profitable, largely due to its high-value REE content. Its cost breakdown includes pre-processing (primarily leaching) (8077.71%), biosorption (1619.04%), and oxalic acid precipitation and TREO roasting (3.35%). Surprisingly, biosorption from the high-grade Bull Hill REE ore is less profitable due to high material cost and low production revenue. Overall, our results confirmed that the application of biosorption to low-grade feedstocks for REE recovery is economically viable.
- Research Organization:
- DOE Geothermal Data Repository; Lawrence Livermore National Laboratory
- Sponsoring Organization:
- USDOE Office of Energy Efficiency and Renewable Energy (EERE), Geothermal Technologies Program (EE-2C)
- Contributing Organization:
- Lawrence Livermore National Laboratory
- OSTI ID:
- 1452714
- Report Number(s):
- 964
- Availability:
- GDRHelp@ee.doe.gov
- Country of Publication:
- United States
- Language:
- English
Similar Records
Techno-economic Assessment for Integrating Biosorption into Rare Earth Recovery Process
Techno-Economic and Life Cycle Assessments for Sustainable Rare Earth Recovery from Coal Byproducts using Biosorption
Journal Article
·
Sun Oct 08 20:00:00 EDT 2017
· ACS Sustainable Chemistry & Engineering
·
OSTI ID:1398787
Techno-Economic and Life Cycle Assessments for Sustainable Rare Earth Recovery from Coal Byproducts using Biosorption
Journal Article
·
Mon Nov 30 19:00:00 EST 2020
· ACS Sustainable Chemistry & Engineering
·
OSTI ID:1836209