Community Detection on the GPU
We present and evaluate a new GPU algorithm based on the Louvain method for community detection. Our algorithm is the first for this problem that parallelizes the access to individual edges. In this way we can fine tune the load balance when processing networks with nodes of highly varying degrees. This is achieved by scaling the number of threads assigned to each node according to its degree. Extensive experiments show that we obtain speedups up to a factor of 270 compared to the sequential algorithm. The algorithm consistently outperforms other recent shared memory implementations and is only one order of magnitude slower than the current fastest parallel Louvain method running on a Blue Gene/Q supercomputer using more than 500K threads.
- Research Organization:
- Pacific Northwest National Laboratory (PNNL), Richland, WA (US)
- Sponsoring Organization:
- USDOE
- DOE Contract Number:
- AC05-76RL01830
- OSTI ID:
- 1440665
- Report Number(s):
- PNNL-SA-123598; KJ0401000
- Country of Publication:
- United States
- Language:
- English
Similar Records
Towards scaling community detection on distributed-memory heterogeneous systems
Distributed Multi-GPU Community Detection on Exascale Computing Platforms