skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Processing and alloying of tungsten heavy alloys

Conference ·
OSTI ID:143697
 [1];  [2]
  1. Southwest Research Institute, San Antonio, TX (United States). Division of Materials and Mechanics
  2. Army Materials Technology Lab., Watertown, MA (United States)

Tungsten heavy alloys are two-phase metal matrix composites with a unique combination of density, strength, and ductility. They are processed by liquid-phase sintering of mixed elemental powders. The final microstructure consists of a contiguous network of nearly pure tungsten grains embedded in a matrix of a ductile W-Ni-Fe alloy. Due to the unique property combination of the material, they are used extensively as kinetic energy penetrators, radiation shields. counterbalances, and a number of other applications in the defense industry. The properties of these alloys are extremely sensitive to the processing conditions. Porosity levels as low as 1% can drastically degrade the properties of these alloys. During processing, care must be taken to reduce or prevent incomplete densification, hydrogen embrittlement, impurity segregation to the grain boundaries, solidification shrinkage induced porosity, and in situ formation of pores due to the sintering atmosphere. This paper will discuss some of the key processing issues for obtaining tungsten heavy alloys with good properties. High strength tungsten heavy alloys are usually fabricated by swaging and aging the conventional as-sintered material. The influence of this on the shear localization tendency of a W-Ni-Co alloy will also be demonstrated. Recent developments have shown that the addition of certain refractory metals partially replacing tungsten can significantly improve the strength of the conventional heavy alloys. This development becomes significant due to the recent interest in near net shaping techniques such as powder injection moldings. The role of suitable alloying additions to the classic W-Ni-Fe based heavy alloys and their processing techniques will also be discussed in this paper.

OSTI ID:
143697
Report Number(s):
CONF-930246-; ISBN 0-87339-251-5; TRN: IM9413%%207
Resource Relation:
Conference: Advanced composites `93: international conference on advanced composite materials (ICACM), Wollongong (Australia), 15-19 Feb 1993; Other Information: PBD: 1993; Related Information: Is Part Of Advanced composites 1993; Chandra, T. [ed.] [Univ. of Wollongong (Australia)]; Dhingra, A.K. [ed.] [DuPont, Wilmington, DE (United States)]; PB: 1464 p.
Country of Publication:
United States
Language:
English