skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: How Well Can We Represent the Spectrum of Convective Clouds in a Climate Model? Comparisons between Internal Parameterization Variables and Radar Observations

Journal Article · · Journal of the Atmospheric Sciences
 [1];  [1];  [1];  [2]
  1. Department of Physics, University of Oxford, Oxford, United Kingdom
  2. Bureau of Meteorology, Melbourne, Victoria, Australia

Current climate models cannot resolve individual convective clouds, and hence parameterizations are needed. The primary goal of convective parameterization is to represent the bulk impact of convection on the gridbox-scale variables. Spectral convective parameterizations also aim to represent the key features of the subgrid-scale convective cloud field such as cloud-top-height distribution and in-cloud vertical velocities in addition to precipitation rates. Ground-based radar retrievals of these quantities have been made available at Darwin, Australia, permitting direct comparisons of internal parameterization variables and providing new observational references for further model development. A spectral convective parameterization [the convective cloud field model (CCFM)] is discussed, and its internal equation of motion is improved. Results from the ECHAM–HAM model in single-column mode using the CCFM and the bulk mass flux Tiedtke–Nordeng scheme are compared with the radar retrievals at Darwin. The CCFM is found to outperform the Tiedtke–Nordeng scheme for cloud-top-height and precipitation-rate distributions. Radar observations are further used to propose a modified CCFM configuration with an aerodynamic drag and reduced entrainment parameter, further improving both the convective cloud-top-height distribution (important for large-scale impact of convection) and the in-cloud vertical velocities (important for aerosol activation). This study provides a new development in the CCFM, improving the representation of convective cloud spectrum characteristics observed in Darwin. This is a step toward an improved representation of convection and ultimately of aerosol effects on convection. It also shows how long-term radar observations of convective cloud properties can help constrain parameters of convective parameterization schemes.

Research Organization:
Bureau of Meteorology, Melbourne, VIC (Australia); Univ. of Oxford (United Kingdom)
Sponsoring Organization:
USDOE Office of Science (SC), Biological and Environmental Research (BER); European Research Council (ERC)
Grant/Contract Number:
FG02-03ER63533; FG02-08ER64527; 603445; FP7–280025; 724602
OSTI ID:
1435391
Alternate ID(s):
OSTI ID: 1509850
Journal Information:
Journal of the Atmospheric Sciences, Journal Name: Journal of the Atmospheric Sciences Vol. 75 Journal Issue: 5; ISSN 0022-4928
Publisher:
American Meteorological SocietyCopyright Statement
Country of Publication:
United States
Language:
English
Citation Metrics:
Cited by: 9 works
Citation information provided by
Web of Science

Cited By (2)

Ongoing Breakthroughs in Convective Parameterization journal April 2019
Aerosol effects on deep convection: the propagation of aerosol perturbations through convective cloud microphysics journal January 2019