skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Bottom-up design of de novo thermoelectric hybrid materials using chalcogenide resurfacing

Abstract

Hybrid organic/inorganic thermoelectric materials based on conducting polymers and inorganic nanostructures have been demonstrated to combine both the inherently low thermal conductivity of the polymer and the superior charge transport properties (high power factors) of the inorganic component. While their performance today still lags behind that of conventional inorganic thermoelectric materials, solution-processable hybrids have made rapid progress and also offer unique advantages not available to conventional rigid inorganic thermoelectrics, namely: (1) low cost fabrication on rigid and flexible substrates, as well as (2) engineering complex conformal geometries for energy harvesting/cooling. While the number of reports of new classes of viable hybrid thermoelectric materials is growing, no group has reported a general approach for bottom-up design of both p- and n-type materials from one common base. Thus, unfortunately, the literature comprises mostly of disconnected discoveries, which limits development and calls for a first-principles approach for property manipulation analogous to doping in traditional semiconductor thermoelectrics. Here, molecular engineering at the organic/inorganic interface and simple processing techniques are combined to demonstrate a modular approach enabling de novo design of complex hybrid thermoelectric systems. Here, we chemically modify the surfaces of inorganic nanostructures and graft conductive polymers to yield robust solution processable p- andmore » n-type inorganic/organic hybrid nanostructures. Our new modular approach not only offers researchers new tools to perform true bottom-up design of thermoelectric hybrids, but also strong performance advantages as well due to the quality of the designed interfaces. For example, we obtain enhanced power factors in existing (by up to 500% in Te/PEDOT:PSS) and novel (Bi 2S 3/PEDOT:PSS) p-type systems, and also generate water-processable and air-stable high performing n-type hybrid systems (Bi 2Te 3/PEDOT:PSS), thus highlighting the potency of our ex situ strategy in opening up new material options for thermoelectric applications. Finally, this strategy establishes a unique platform with broad handles for custom tailoring of thermal and electrical properties through hybrid material tunability and enables independent control over inorganic material chemistry, nanostructure geometry, and organic material properties, thus providing a robust pathway to major performance enhancements.« less

Authors:
 [1];  [2];  [2];  [1];  [1];  [1];  [3];  [4];  [5]; ORCiD logo [1]
  1. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Molecular Foundry
  2. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Molecular Foundry; Univ. of California, Berkeley, CA (United States). Dept. of Chemical and Biomolecular Engineering
  3. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). National Center for Electron Microscopy
  4. California Maritime Academy, Vallejo, CA (United States)
  5. Univ. of California, Santa Barbara, CA (United States). Dept. of Chemical Engineering and Materials
Publication Date:
Research Org.:
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22); USDOD
OSTI Identifier:
1435075
Grant/Contract Number:  
AC02-05CH11231
Resource Type:
Journal Article: Accepted Manuscript
Journal Name:
Journal of Materials Chemistry. A
Additional Journal Information:
Journal Volume: 5; Journal Issue: 7; Journal ID: ISSN 2050-7488
Publisher:
Royal Society of Chemistry
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; 37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY

Citation Formats

Sahu, Ayaskanta, Russ, Boris, Su, Norman C., Forster, Jason D., Zhou, Preston, Cho, Eun Seon, Ercius, Peter, Coates, Nelson E., Segalman, Rachel A., and Urban, Jeffrey J. Bottom-up design of de novo thermoelectric hybrid materials using chalcogenide resurfacing. United States: N. p., 2017. Web. doi:10.1039/C6TA09781B.
Sahu, Ayaskanta, Russ, Boris, Su, Norman C., Forster, Jason D., Zhou, Preston, Cho, Eun Seon, Ercius, Peter, Coates, Nelson E., Segalman, Rachel A., & Urban, Jeffrey J. Bottom-up design of de novo thermoelectric hybrid materials using chalcogenide resurfacing. United States. doi:10.1039/C6TA09781B.
Sahu, Ayaskanta, Russ, Boris, Su, Norman C., Forster, Jason D., Zhou, Preston, Cho, Eun Seon, Ercius, Peter, Coates, Nelson E., Segalman, Rachel A., and Urban, Jeffrey J. Sun . "Bottom-up design of de novo thermoelectric hybrid materials using chalcogenide resurfacing". United States. doi:10.1039/C6TA09781B. https://www.osti.gov/servlets/purl/1435075.
@article{osti_1435075,
title = {Bottom-up design of de novo thermoelectric hybrid materials using chalcogenide resurfacing},
author = {Sahu, Ayaskanta and Russ, Boris and Su, Norman C. and Forster, Jason D. and Zhou, Preston and Cho, Eun Seon and Ercius, Peter and Coates, Nelson E. and Segalman, Rachel A. and Urban, Jeffrey J.},
abstractNote = {Hybrid organic/inorganic thermoelectric materials based on conducting polymers and inorganic nanostructures have been demonstrated to combine both the inherently low thermal conductivity of the polymer and the superior charge transport properties (high power factors) of the inorganic component. While their performance today still lags behind that of conventional inorganic thermoelectric materials, solution-processable hybrids have made rapid progress and also offer unique advantages not available to conventional rigid inorganic thermoelectrics, namely: (1) low cost fabrication on rigid and flexible substrates, as well as (2) engineering complex conformal geometries for energy harvesting/cooling. While the number of reports of new classes of viable hybrid thermoelectric materials is growing, no group has reported a general approach for bottom-up design of both p- and n-type materials from one common base. Thus, unfortunately, the literature comprises mostly of disconnected discoveries, which limits development and calls for a first-principles approach for property manipulation analogous to doping in traditional semiconductor thermoelectrics. Here, molecular engineering at the organic/inorganic interface and simple processing techniques are combined to demonstrate a modular approach enabling de novo design of complex hybrid thermoelectric systems. Here, we chemically modify the surfaces of inorganic nanostructures and graft conductive polymers to yield robust solution processable p- and n-type inorganic/organic hybrid nanostructures. Our new modular approach not only offers researchers new tools to perform true bottom-up design of thermoelectric hybrids, but also strong performance advantages as well due to the quality of the designed interfaces. For example, we obtain enhanced power factors in existing (by up to 500% in Te/PEDOT:PSS) and novel (Bi2S3/PEDOT:PSS) p-type systems, and also generate water-processable and air-stable high performing n-type hybrid systems (Bi2Te3/PEDOT:PSS), thus highlighting the potency of our ex situ strategy in opening up new material options for thermoelectric applications. Finally, this strategy establishes a unique platform with broad handles for custom tailoring of thermal and electrical properties through hybrid material tunability and enables independent control over inorganic material chemistry, nanostructure geometry, and organic material properties, thus providing a robust pathway to major performance enhancements.},
doi = {10.1039/C6TA09781B},
journal = {Journal of Materials Chemistry. A},
issn = {2050-7488},
number = 7,
volume = 5,
place = {United States},
year = {2017},
month = {1}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 13 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Click Chemistry: Diverse Chemical Function from a Few Good Reactions
journal, June 2001


Thermopower enhancement in conducting polymer nanocomposites via carrier energy scattering at the organic–inorganic semiconductor interface
journal, January 2012

  • He, Ming; Ge, Jing; Lin, Zhiqun
  • Energy & Environmental Science, Vol. 5, Issue 8
  • DOI: 10.1039/c2ee21803h

Highly Conductive PEDOT:PSS Treated with Formic Acid for ITO-Free Polymer Solar Cells
journal, February 2014

  • Mengistie, Desalegn A.; Ibrahem, Mohammed A.; Wang, Pen-Cheng
  • ACS Applied Materials & Interfaces, Vol. 6, Issue 4
  • DOI: 10.1021/am405024d

Semiconductor Anisotropic Nanocomposites Obtained by Directly Coupling Conjugated Polymers with Quantum Rods
journal, March 2011

  • Zhao, Lei; Pang, Xinchang; Adhikary, Ramkrishna
  • Angewandte Chemie International Edition, Vol. 50, Issue 17
  • DOI: 10.1002/anie.201100200

Transparent and flexible organic semiconductor nanofilms with enhanced thermoelectric efficiency
journal, January 2014

  • Lee, Seung Hwan; Park, Hongkwan; Kim, Soyeon
  • J. Mater. Chem. A, Vol. 2, Issue 20
  • DOI: 10.1039/C4TA00700J

Complex thermoelectric materials
journal, February 2008

  • Snyder, G. Jeffrey; Toberer, Eric S.
  • Nature Materials, Vol. 7, Issue 2, p. 105-114
  • DOI: 10.1038/nmat2090

Thermal conductivity of carbon nanotubes and their polymer nanocomposites: A review
journal, July 2011


Thermoelectric figure of merit of a one-dimensional conductor
journal, June 1993


New Directions for Low-Dimensional Thermoelectric Materials
journal, April 2007

  • Dresselhaus, M. S.; Chen, G.; Tang, M. Y.
  • Advanced Materials, Vol. 19, Issue 8, p. 1043-1053
  • DOI: 10.1002/adma.200600527

The best thermoelectric.
journal, July 1996

  • Mahan, G. D.; Sofo, J. O.
  • Proceedings of the National Academy of Sciences, Vol. 93, Issue 15
  • DOI: 10.1073/pnas.93.15.7436

An Unconventional Route to Monodisperse and Intimately Contacted Semiconducting Organic-Inorganic Nanocomposites
journal, February 2015

  • Xu, Hui; Pang, Xinchang; He, Yanjie
  • Angewandte Chemie International Edition, Vol. 54, Issue 15
  • DOI: 10.1002/anie.201500763

Enhancement of Thermoelectric Efficiency in PbTe by Distortion of the Electronic Density of States
journal, July 2008

  • Heremans, J. P.; Jovovic, V.; Toberer, E. S.
  • Science, Vol. 321, Issue 5888, p. 554-557
  • DOI: 10.1126/science.1159725

Hybrid nanocomposite materials with organic and inorganic components for opto-electronic devices
journal, January 2008

  • Holder, Elisabeth; Tessler, Nir; Rogach, Andrey L.
  • Journal of Materials Chemistry, Vol. 18, Issue 10
  • DOI: 10.1039/b712176h

Improvement of the Seebeck coefficient of PEDOT:PSS by chemical reduction combined with a novel method for its transfer using free-standing thin films
journal, January 2014

  • Massonnet, Nicolas; Carella, Alexandre; Jaudouin, Olivier
  • J. Mater. Chem. C, Vol. 2, Issue 7
  • DOI: 10.1039/C3TC31674B

Thermoelectric power factor optimization in PEDOT:PSS tellurium nanowire hybrid composites
journal, January 2013

  • Yee, Shannon K.; Coates, Nelson E.; Majumdar, Arun
  • Physical Chemistry Chemical Physics, Vol. 15, Issue 11
  • DOI: 10.1039/c3cp44558e

Improved Thermoelectric Performance of Free-Standing PEDOT:PSS/Bi2Te3 Films with Low Thermal Conductivity
journal, April 2013


Thermoelectric Materials, Phenomena, and Applications: A Bird's Eye View
journal, March 2006

  • Tritt, Terry M.; Subramanian, M. A.
  • MRS Bulletin, Vol. 31, Issue 3
  • DOI: 10.1557/mrs2006.44

Synthesis and Characterization of Monodisperse Nanocrystals and Close-Packed Nanocrystal Assemblies
journal, August 2000


Thermal Conductivity Reduction and Thermoelectric Figure of Merit Increase by Embedding Nanoparticles in Crystalline Semiconductors
journal, February 2006


Studies of dopant effects in poly(3,4-ethylenedi-oxythiophene) using Raman spectroscopy
journal, January 2006

  • Chiu, William W.; Travaš-Sejdić, Jadranka; Cooney, Ralph P.
  • Journal of Raman Spectroscopy, Vol. 37, Issue 12
  • DOI: 10.1002/jrs.1545

Nanoparticle–polymer photovoltaic cells
journal, April 2008

  • Saunders, Brian R.; Turner, Michael L.
  • Advances in Colloid and Interface Science, Vol. 138, Issue 1
  • DOI: 10.1016/j.cis.2007.09.001

High-performance thermoelectric nanocomposites from nanocrystal building blocks
journal, March 2016

  • Ibáñez, Maria; Luo, Zhishan; Genç, Aziz
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms10766

Thin-film thermoelectric devices with high room-temperature figures of merit
journal, October 2001

  • Venkatasubramanian, Rama; Siivola, Edward; Colpitts, Thomas
  • Nature, Vol. 413, Issue 6856, p. 597-602
  • DOI: 10.1038/35098012

Rational Synthesis of Ultrathin n-Type Bi2Te3 Nanowires with Enhanced Thermoelectric Properties
journal, November 2011

  • Zhang, Genqiang; Kirk, Benjamin; Jauregui, Luis A.
  • Nano Letters, Vol. 12, Issue 1, p. 56-60
  • DOI: 10.1021/nl202935k

Solution processed organic thermoelectrics: towards flexible thermoelectric modules
journal, January 2015

  • Chen, Yani; Zhao, Yan; Liang, Ziqi
  • Energy & Environmental Science, Vol. 8, Issue 2
  • DOI: 10.1039/C4EE03297G

Optimization of the thermoelectric figure of merit in the conducting polymer poly(3,4-ethylenedioxythiophene)
journal, May 2011

  • Bubnova, Olga; Khan, Zia Ullah; Malti, Abdellah
  • Nature Materials, Vol. 10, Issue 6, p. 429-433
  • DOI: 10.1038/nmat3012

The maximum possible conversion efficiency of silicon‐germanium thermoelectric generators
journal, September 1991

  • Slack, Glen A.; Hussain, Moayyed A.
  • Journal of Applied Physics, Vol. 70, Issue 5
  • DOI: 10.1063/1.349385

Terahertz and infrared transmission of an organic/inorganic hybrid thermoelectric material
journal, April 2014

  • Heyman, J. N.; Alebachew, B. A.; Kaminski, Z. S.
  • Applied Physics Letters, Vol. 104, Issue 14
  • DOI: 10.1063/1.4871316

Engineering Synergy: Energy and Mass Transport in Hybrid Nanomaterials
journal, March 2015

  • Cho, Eun Seon; Coates, Nelson E.; Forster, Jason D.
  • Advanced Materials, Vol. 27, Issue 38
  • DOI: 10.1002/adma.201500130

Engineered doping of organic semiconductors for enhanced thermoelectric efficiency
journal, May 2013

  • Kim, G-H.; Shao, L.; Zhang, K.
  • Nature Materials, Vol. 12, Issue 8
  • DOI: 10.1038/nmat3635

Silicon nanowires as efficient thermoelectric materials
journal, January 2008

  • Boukai, Akram I.; Bunimovich, Yuri; Tahir-Kheli, Jamil
  • Nature, Vol. 451, Issue 7175, p. 168-171
  • DOI: 10.1038/nature06458

Shape-Controlled Bi2S3 Nanocrystals and Their Plasma Polymerization into Flexible Films
journal, August 2006

  • Malakooti, R.; Cademartiri, L.; Akçakir, Y.
  • Advanced Materials, Vol. 18, Issue 16
  • DOI: 10.1002/adma.200600460

Bendable n-Type Metallic Nanocomposites with Large Thermoelectric Power Factor
journal, November 2016


Facile Preparation and Thermoelectric Properties of Bi 2 Te 3 Based Alloy Nanosheet/PEDOT:PSS Composite Films
journal, April 2014

  • Du, Yong; Cai, K. F.; Chen, Song
  • ACS Applied Materials & Interfaces, Vol. 6, Issue 8
  • DOI: 10.1021/am5002772

Quantum Dot Superlattice Thermoelectric Materials and Devices
journal, September 2002


Paper Thermoelectrics: Merging Nanotechnology with Naturally Abundant Fibrous Material
journal, August 2016

  • Sun, Chengjun; Goharpey, Amir Hossein; Rai, Ayush
  • ACS Applied Materials & Interfaces, Vol. 8, Issue 34
  • DOI: 10.1021/acsami.6b05843

Nanostructured Thermoelectrics: Big Efficiency Gains from Small Features
journal, July 2010

  • Vineis, Christopher J.; Shakouri, Ali; Majumdar, Arun
  • Advanced Materials, Vol. 22, Issue 36, p. 3970-3980
  • DOI: 10.1002/adma.201000839

Free-Standing PEDOT-PSS/Ca3Co4O9 Composite Films as Novel Thermoelectric Materials
journal, December 2010

  • Liu, Congcong; Jiang, Fengxing; Huang, Mingyu
  • Journal of Electronic Materials, Vol. 40, Issue 5
  • DOI: 10.1007/s11664-010-1465-0

Effect of Interfacial Properties on Polymer-Nanocrystal Thermoelectric Transport
journal, January 2013

  • Coates, Nelson E.; Yee, Shannon K.; McCulloch, Bryan
  • Advanced Materials, Vol. 25, Issue 11, p. 1629-1633
  • DOI: 10.1002/adma.201203915

Facile Fabrication and Thermoelectric Properties of PbTe-Modified Poly(3,4-ethylenedioxythiophene) Nanotubes
journal, March 2011

  • Wang, Yuanyuan; Cai, Kefeng; Yao, Xi
  • ACS Applied Materials & Interfaces, Vol. 3, Issue 4
  • DOI: 10.1021/am101287w

Spectroscopic and conductivity studies of doping in chemically synthesized poly(3,4-ethylenedioxythiophene)
journal, October 2005


In Situ Spectroelectrochemical Raman Studies of Poly(3,4-ethylenedioxythiophene) (PEDT)
journal, October 1999

  • Garreau, S.; Louarn, G.; Buisson, J. P.
  • Macromolecules, Vol. 32, Issue 20
  • DOI: 10.1021/ma9905674

Composition-matched molecular "solders" for semiconductors
journal, January 2015


Organic−Inorganic Nanocomposites by Placing Conjugated Polymers in Intimate Contact with Quantum Rods
journal, May 2011

  • Zhao, Lei; Pang, Xinchang; Adhikary, Ramkrishna
  • Advanced Materials, Vol. 23, Issue 25
  • DOI: 10.1002/adma.201100923

Enhanced thermoelectric performance of rough silicon nanowires
journal, January 2008

  • Hochbaum, Allon I.; Chen, Renkun; Delgado, Raul Diaz
  • Nature, Vol. 451, Issue 7175, p. 163-167
  • DOI: 10.1038/nature06381

Cooling, Heating, Generating Power, and Recovering Waste Heat with Thermoelectric Systems
journal, September 2008


Power Factor Enhancement in Solution-Processed Organic n-Type Thermoelectrics Through Molecular Design
journal, March 2014

  • Russ, Boris; Robb, Maxwell J.; Brunetti, Fulvio G.
  • Advanced Materials, Vol. 26, Issue 21
  • DOI: 10.1002/adma.201306116

Water-Processable Polymer−Nanocrystal Hybrids for Thermoelectrics
journal, November 2010

  • See, Kevin C.; Feser, Joseph P.; Chen, Cynthia E.
  • Nano Letters, Vol. 10, Issue 11, p. 4664-4667
  • DOI: 10.1021/nl102880k

Thermoelectric power and structural properties in two-phase Sn/SnTe alloys
journal, January 2009

  • Gelbstein, Yaniv
  • Journal of Applied Physics, Vol. 105, Issue 2
  • DOI: 10.1063/1.3068463

Highly Luminescent CdSe/ZnSe Core/Shell Nanocrystals of Low Size Dispersion
journal, July 2002

  • Reiss, Peter; Bleuse, Joël; Pron, Adam
  • Nano Letters, Vol. 2, Issue 7
  • DOI: 10.1021/nl025596y

Metal-free Inorganic Ligands for Colloidal Nanocrystals: S2–, HS, Se2–, HSe, Te2–, HTe, TeS32–, OH, and NH2– as Surface Ligands
journal, July 2011

  • Nag, Angshuman; Kovalenko, Maksym V.; Lee, Jong-Soo
  • Journal of the American Chemical Society, Vol. 133, Issue 27, p. 10612-10620
  • DOI: 10.1021/ja2029415

Design Principle of Telluride-Based Nanowire Heterostructures for Potential Thermoelectric Applications
journal, June 2012

  • Zhang, Genqiang; Fang, Haiyu; Yang, Haoran
  • Nano Letters, Vol. 12, Issue 7, p. 3627-3633
  • DOI: 10.1021/nl301327d

Toward High-Performance Organic–Inorganic Hybrid Solar Cells: Bringing Conjugated Polymers and Inorganic Nanocrystals in Close Contact
journal, May 2013

  • He, Ming; Qiu, Feng; Lin, Zhiqun
  • The Journal of Physical Chemistry Letters, Vol. 4, Issue 11
  • DOI: 10.1021/jz400381x

Visible Luminescence of Dedoped DBU-Treated PEDOT:PSS Films
journal, August 2015

  • Cruz-Cruz, Isidro; Reyes-Reyes, Marisol; Rosales-Gallegos, Israel A.
  • The Journal of Physical Chemistry C, Vol. 119, Issue 33
  • DOI: 10.1021/acs.jpcc.5b04016

π-Conjugated Polymers for Organic Electronics and Photovoltaic Cell Applications
journal, February 2011


Simultaneously Improving Electrical Conductivity and Thermopower of Polyaniline Composites by Utilizing Carbon Nanotubes as High Mobility Conduits
journal, May 2015

  • Wang, Hong; Yi, Su-in; Pu, Xiong
  • ACS Applied Materials & Interfaces, Vol. 7, Issue 18
  • DOI: 10.1021/acsami.5b01149

Prospects of Colloidal Nanocrystals for Electronic and Optoelectronic Applications
journal, January 2010

  • Talapin, Dmitri V.; Lee, Jong-Soo; Kovalenko, Maksym V.
  • Chemical Reviews, Vol. 110, Issue 1
  • DOI: 10.1021/cr900137k

Promising Thermoelectric Properties of Commercial PEDOT:PSS Materials and Their Bi 2 Te 3 Powder Composites
journal, October 2010

  • Zhang, B.; Sun, J.; Katz, H. E.
  • ACS Applied Materials & Interfaces, Vol. 2, Issue 11
  • DOI: 10.1021/am100654p

High-Thermoelectric Performance of Nanostructured Bismuth Antimony Telluride Bulk Alloys
journal, May 2008


Varying the ionic functionalities of conjugated polyelectrolytes leads to both p- and n-type carbon nanotube composites for flexible thermoelectrics
journal, January 2015

  • Mai, Cheng-Kang; Russ, Boris; Fronk, Stephanie L.
  • Energy & Environmental Science, Vol. 8, Issue 8
  • DOI: 10.1039/C5EE00938C

Enhanced Thermopower via Carrier Energy Filtering in Solution-Processable Pt–Sb 2 Te 3 Nanocomposites
journal, July 2011

  • Ko, Dong-Kyun; Kang, Yijin; Murray, Christopher B.
  • Nano Letters, Vol. 11, Issue 7
  • DOI: 10.1021/nl2012246