Active Subspaces for Wind Plant Surrogate Modeling
- National Renewable Energy Laboratory (NREL), Golden, CO (United States)
- Massachusetts Institute of Technology
Understanding the uncertainty in wind plant performance is crucial to their cost-effective design and operation. However, conventional approaches to uncertainty quantification (UQ), such as Monte Carlo techniques or surrogate modeling, are often computationally intractable for utility-scale wind plants because of poor congergence rates or the curse of dimensionality. In this paper we demonstrate that wind plant power uncertainty can be well represented with a low-dimensional active subspace, thereby achieving a significant reduction in the dimension of the surrogate modeling problem. We apply the active sub-spaces technique to UQ of plant power output with respect to uncertainty in turbine axial induction factors, and find a single active subspace direction dominates the sensitivity in power output. When this single active subspace direction is used to construct a quadratic surrogate model, the number of model unknowns can be reduced by up to 3 orders of magnitude without compromising performance on unseen test data. We conclude that the dimension reduction achieved with active subspaces makes surrogate-based UQ approaches tractable for utility-scale wind plants.
- Research Organization:
- National Renewable Energy Laboratory (NREL), Golden, CO (United States)
- Sponsoring Organization:
- USDOE Office of Energy Efficiency and Renewable Energy (EERE), Wind and Water Technologies Office (EE-4W)
- DOE Contract Number:
- AC36-08GO28308
- OSTI ID:
- 1433796
- Report Number(s):
- NREL/CP-2C00-71342
- Country of Publication:
- United States
- Language:
- English
Similar Records
Active Subspace Methods for Data-Intensive Inverse Problems
Inverse regression-based uncertainty quantification algorithms for high-dimensional models: Theory and practice