skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Dependence of the evolution of carbon dynamics in the northern permafrost region on the trajectory of climate change

Abstract

We conducted a model-based assessment of changes in permafrost area and carbon storage for simulations driven by RCP4.5 and RCP8.5 projections between 2010 and 2299 for the northern permafrost region. All models simulating carbon represented soil with depth, a critical structural feature needed to represent the permafrost carbon–climate feedback, but that is not a universal feature of all climate models. Between 2010 and 2299, simulations indicated losses of permafrost between 3 and 5 million km2 for the RCP4.5 climate and between 6 and 16 million km 2 for the RCP8.5 climate. For the RCP4.5 projection, cumulative change in soil carbon varied between 66-Pg C (10 15-g carbon) loss to 70-Pg C gain. For the RCP8.5 projection, losses in soil carbon varied between 74 and 652 Pg C (mean loss, 341 Pg C). For the RCP4.5 projection, gains in vegetation carbon were largely responsible for the overall projected net gains in ecosystem carbon by 2299 (8- to 244-Pg C gains). In contrast, for the RCP8.5 projection, gains in vegetation carbon were not great enough to compensate for the losses of carbon projected by four of the five models; changes in ecosystem carbon ranged from a 641-Pg C loss to a 167-Pgmore » C gain (mean, 208-Pg C loss). The models indicate that substantial net losses of ecosystem carbon would not occur until after 2100. In conclusion, this assessment suggests that effective mitigation efforts during the remainder of this century could attenuate the negative consequences of the permafrost carbon–climate feedback.« less

Authors:
ORCiD logo [1];  [2];  [3];  [4];  [5];  [6];  [7];  [8];  [9];  [9];  [10];  [11];  [12];  [13]; ORCiD logo [14]; ORCiD logo [15];  [16];  [17];  [18];  [19] more »;  [20]; ORCiD logo [19];  [21] « less
  1. Univ. of Alaska Fairbanks, Fairbanks, AK (United States). US Geological Survey, Alaska Cooperative Fish and Wildlife Research Unit
  2. National Center for Atmospheric Research, Boulder, CO (United States). Climate and Global Dynamics Lab.
  3. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Climate and Ecosystem Sciences Division
  4. Univ. of Alaska Fairbanks, Fairbanks, AK (United States). Inst. of Arctic Biology
  5. Met Office Hadley Centre, Exeter (United Kingdom)
  6. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Environmental Sciences Division; Auburn Univ., AL (United States). International Center for Climate and Global Change Research
  7. Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
  8. St. Francis Xavier Univ., Antigonish, NS (Canada). Dept. of Earth Sciences
  9. Univ. of Alaska, Fairbanks, Fairbanks, AK (United States). Geophysical Inst.
  10. Laboratoire des Sciences du Climat et de l'Environnement, Gif-sur-Yvette (France). Commissariat a l'Energie Atomique–CNRS–Universite de Versailles Saint-Quentin-en-Yvelines; Univ. Grenoble Alpes, Grenoble (France)
  11. Alfred Wegener Inst. for Polar and Marine Research, Potsdam (Germany); Beijing Normal Univ., Beijing (China)
  12. Laboratoire des Sciences du Climat et de l'Environnement, Gif-sur-Yvette (France). Commissariat a l'Energie Atomique–CNRS–Universite de Versailles Saint-Quentin-en-Yvelines
  13. Univ. Grenoble Alpes, Grenoble (France); oIrstea, Hydrology–Hydraulics Research Unit, Villeurbanne Cedex (France)
  14. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Environmental Sciences Division; Univ. of Maine, Orono, ME (United States). School of Forest Resources
  15. Beijing Normal Univ., Beijing (China)
  16. Univ. Grenoble Alpes, Grenoble (France)
  17. Beijing Normal Univ., Beijing (China); Univ. of Lapland, Rovaniemi (Finland). Arctic Centre
  18. Univ. of Alaska Fairbanks, Fairbanks, AK (United States). Geophysical Inst.; Tyumen State Univ., Tyumen (Russia). International Inst. of Cryology and Cryosphy
  19. Northern Arizona Univ., Flagstaff, AZ (United States). Center for Ecosystem Science and Society, and Dept. of Biological Sciences
  20. Univ. of Colorado, Boulder, CO (United States). National Snow and Ice Data Center
  21. Purdue Univ., West Lafayette, IN (United States). Dept. of Earth, Atmospheric, and Planetary Sciences
Publication Date:
Research Org.:
Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Sponsoring Org.:
National Science Foundation (NSF); USDOE Office of Science (SC), Biological and Environmental Research (BER); Natural Sciences and Engineering Research Council of Canada (NSERC)
OSTI Identifier:
1431083
Alternate Identifier(s):
OSTI ID: 1465422; OSTI ID: 1468039
Report Number(s):
LA-UR-18-20805
Journal ID: ISSN 0027-8424
Grant/Contract Number:  
AC52-06NA25396; 282700; AC02-05CH11231; AC05-00OR22725
Resource Type:
Journal Article: Accepted Manuscript
Journal Name:
Proceedings of the National Academy of Sciences of the United States of America
Additional Journal Information:
Journal Volume: 115; Journal Issue: 15; Journal ID: ISSN 0027-8424
Publisher:
National Academy of Sciences, Washington, DC (United States)
Country of Publication:
United States
Language:
English
Subject:
54 ENVIRONMENTAL SCIENCES; Earth Sciences; permafrost carbon feedback

Citation Formats

McGuire, A. David, Lawrence, David M., Koven, Charles, Clein, Joy S., Burke, Eleanor, Chen, Guangsheng, Jafarov, Elchin, MacDougall, Andrew H., Marchenko, Sergey, Nicolsky, Dmitry, Peng, Shushi, Rinke, Annette, Ciais, Philippe, Gouttevin, Isabelle, Hayes, Daniel J., Ji, Duoying, Krinner, Gerhard, Moore, John C., Romanovsky, Vladimir, Schadel, Christina, Schaefer, Kevin, Schuur, Edward A. G., and Zhuang, Qianlai. Dependence of the evolution of carbon dynamics in the northern permafrost region on the trajectory of climate change. United States: N. p., 2018. Web. doi:10.1073/pnas.1719903115.
McGuire, A. David, Lawrence, David M., Koven, Charles, Clein, Joy S., Burke, Eleanor, Chen, Guangsheng, Jafarov, Elchin, MacDougall, Andrew H., Marchenko, Sergey, Nicolsky, Dmitry, Peng, Shushi, Rinke, Annette, Ciais, Philippe, Gouttevin, Isabelle, Hayes, Daniel J., Ji, Duoying, Krinner, Gerhard, Moore, John C., Romanovsky, Vladimir, Schadel, Christina, Schaefer, Kevin, Schuur, Edward A. G., & Zhuang, Qianlai. Dependence of the evolution of carbon dynamics in the northern permafrost region on the trajectory of climate change. United States. doi:10.1073/pnas.1719903115.
McGuire, A. David, Lawrence, David M., Koven, Charles, Clein, Joy S., Burke, Eleanor, Chen, Guangsheng, Jafarov, Elchin, MacDougall, Andrew H., Marchenko, Sergey, Nicolsky, Dmitry, Peng, Shushi, Rinke, Annette, Ciais, Philippe, Gouttevin, Isabelle, Hayes, Daniel J., Ji, Duoying, Krinner, Gerhard, Moore, John C., Romanovsky, Vladimir, Schadel, Christina, Schaefer, Kevin, Schuur, Edward A. G., and Zhuang, Qianlai. Mon . "Dependence of the evolution of carbon dynamics in the northern permafrost region on the trajectory of climate change". United States. doi:10.1073/pnas.1719903115. https://www.osti.gov/servlets/purl/1431083.
@article{osti_1431083,
title = {Dependence of the evolution of carbon dynamics in the northern permafrost region on the trajectory of climate change},
author = {McGuire, A. David and Lawrence, David M. and Koven, Charles and Clein, Joy S. and Burke, Eleanor and Chen, Guangsheng and Jafarov, Elchin and MacDougall, Andrew H. and Marchenko, Sergey and Nicolsky, Dmitry and Peng, Shushi and Rinke, Annette and Ciais, Philippe and Gouttevin, Isabelle and Hayes, Daniel J. and Ji, Duoying and Krinner, Gerhard and Moore, John C. and Romanovsky, Vladimir and Schadel, Christina and Schaefer, Kevin and Schuur, Edward A. G. and Zhuang, Qianlai},
abstractNote = {We conducted a model-based assessment of changes in permafrost area and carbon storage for simulations driven by RCP4.5 and RCP8.5 projections between 2010 and 2299 for the northern permafrost region. All models simulating carbon represented soil with depth, a critical structural feature needed to represent the permafrost carbon–climate feedback, but that is not a universal feature of all climate models. Between 2010 and 2299, simulations indicated losses of permafrost between 3 and 5 million km2 for the RCP4.5 climate and between 6 and 16 million km2 for the RCP8.5 climate. For the RCP4.5 projection, cumulative change in soil carbon varied between 66-Pg C (1015-g carbon) loss to 70-Pg C gain. For the RCP8.5 projection, losses in soil carbon varied between 74 and 652 Pg C (mean loss, 341 Pg C). For the RCP4.5 projection, gains in vegetation carbon were largely responsible for the overall projected net gains in ecosystem carbon by 2299 (8- to 244-Pg C gains). In contrast, for the RCP8.5 projection, gains in vegetation carbon were not great enough to compensate for the losses of carbon projected by four of the five models; changes in ecosystem carbon ranged from a 641-Pg C loss to a 167-Pg C gain (mean, 208-Pg C loss). The models indicate that substantial net losses of ecosystem carbon would not occur until after 2100. In conclusion, this assessment suggests that effective mitigation efforts during the remainder of this century could attenuate the negative consequences of the permafrost carbon–climate feedback.},
doi = {10.1073/pnas.1719903115},
journal = {Proceedings of the National Academy of Sciences of the United States of America},
issn = {0027-8424},
number = 15,
volume = 115,
place = {United States},
year = {2018},
month = {3}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 15 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Multi-scale validation of a new soil freezing scheme for a land-surface model with physically-based hydrology
journal, January 2012


Climate change and the permafrost carbon feedback
journal, April 2015

  • Schuur, E. A. G.; McGuire, A. D.; Schädel, C.
  • Nature, Vol. 520, Issue 7546
  • DOI: 10.1038/nature14338

Climate Change Projections in CESM1(CAM5) Compared to CCSM4
journal, September 2013

  • Meehl, Gerald A.; Washington, Warren M.; Arblaster, Julie M.
  • Journal of Climate, Vol. 26, Issue 17
  • DOI: 10.1175/JCLI-D-12-00572.1

Simulated high-latitude soil thermal dynamics during the past 4 decades
journal, January 2016


The Common Land Model
journal, August 2003

  • Dai, Yongjiu; Zeng, Xubin; Dickinson, Robert E.
  • Bulletin of the American Meteorological Society, Vol. 84, Issue 8
  • DOI: 10.1175/BAMS-84-8-1013

Amount and timing of permafrost carbon release in response to climate warming: AMOUNT AND TIMING OF PERMAFROST CARBON RELEASE
journal, February 2011


Estimation of soil thermal properties using in-situ temperature measurements in the active layer and permafrost
journal, January 2009


Significant contribution to climate warming from the permafrost carbon feedback
journal, September 2012

  • MacDougall, Andrew H.; Avis, Christopher A.; Weaver, Andrew J.
  • Nature Geoscience, Vol. 5, Issue 10
  • DOI: 10.1038/ngeo1573

A pan-Arctic synthesis of CH 4 and CO 2 production from anoxic soil incubations
journal, March 2015

  • Treat, Claire C.; Natali, Susan M.; Ernakovich, Jessica
  • Global Change Biology, Vol. 21, Issue 7
  • DOI: 10.1111/gcb.12875

The Joint UK Land Environment Simulator (JULES), model description – Part 2: Carbon fluxes and vegetation dynamics
journal, January 2011

  • Clark, D. B.; Mercado, L. M.; Sitch, S.
  • Geoscientific Model Development, Vol. 4, Issue 3
  • DOI: 10.5194/gmd-4-701-2011

Permafrost thaw and resulting soil moisture changes regulate projected high-latitude CO 2 and CH 4 emissions
journal, September 2015


Higher climatological temperature sensitivity of soil carbon in cold than warm climates
journal, October 2017

  • Koven, Charles D.; Hugelius, Gustaf; Lawrence, David M.
  • Nature Climate Change, Vol. 7, Issue 11
  • DOI: 10.1038/nclimate3421

The impact of the permafrost carbon feedback on global climate
journal, August 2014

  • Schaefer, Kevin; Lantuit, Hugues; Romanovsky, Vladimir E.
  • Environmental Research Letters, Vol. 9, Issue 8
  • DOI: 10.1088/1748-9326/9/8/085003

Environmental and physical controls on northern terrestrial methane emissions across permafrost zones
journal, November 2012

  • Olefeldt, David; Turetsky, Merritt R.; Crill, Patrick M.
  • Global Change Biology, Vol. 19, Issue 2
  • DOI: 10.1111/gcb.12071

Changes in vegetation in northern Alaska under scenarios of climate change, 2003–2100: implications for climate feedbacks
journal, June 2009

  • Euskirchen, E. S.; McGuire, A. D.; Chapin, F. S.
  • Ecological Applications, Vol. 19, Issue 4
  • DOI: 10.1890/08-0806.1

Multicentury changes in ocean and land contributions to the climate-carbon feedback: CARBON CYCLE FEEDBACKS TO 2300 IN CESM
journal, June 2015

  • Randerson, J. T.; Lindsay, K.; Munoz, E.
  • Global Biogeochemical Cycles, Vol. 29, Issue 6
  • DOI: 10.1002/2014GB005079

Missing pieces to modeling the Arctic-Boreal puzzle
journal, February 2018

  • Fisher, Joshua B.; Hayes, Daniel J.; Schwalm, Christopher R.
  • Environmental Research Letters, Vol. 13, Issue 2
  • DOI: 10.1088/1748-9326/aa9d9a

A new estimate of tundra-biome phytomass from trans-Arctic field data and AVHRR NDVI
journal, September 2011


On the formation of high-latitude soil carbon stocks: Effects of cryoturbation and insulation by organic matter in a land surface model
journal, January 2009

  • Koven, C.; Friedlingstein, P.; Ciais, P.
  • Geophysical Research Letters, Vol. 36, Issue 21
  • DOI: 10.1029/2009GL040150

Evaluation of terrestrial carbon cycle models for their response to climate variability and to CO 2 trends
journal, April 2013

  • Piao, Shilong; Sitch, Stephen; Ciais, Philippe
  • Global Change Biology, Vol. 19, Issue 7
  • DOI: 10.1111/gcb.12187

Taking stock of circumboreal forest carbon with ground measurements, airborne and spaceborne LiDAR
journal, October 2013

  • Neigh, Christopher S. R.; Nelson, Ross F.; Ranson, K. Jon
  • Remote Sensing of Environment, Vol. 137
  • DOI: 10.1016/j.rse.2013.06.019

Estimated stocks of circumpolar permafrost carbon with quantified uncertainty ranges and identified data gaps
journal, January 2014


A simplified, data-constrained approach to estimate the permafrost carbon–climate feedback
journal, November 2015

  • Koven, C. D.; Schuur, E. A. G.; Schädel, C.
  • Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 373, Issue 2054
  • DOI: 10.1098/rsta.2014.0423

Interactions between carbon and nitrogen dynamics in estimating net primary productivity for potential vegetation in North America
journal, June 1992

  • McGuire, A. D.; Melillo, J. M.; Joyce, L. A.
  • Global Biogeochemical Cycles, Vol. 6, Issue 2
  • DOI: 10.1029/92GB00219

How the insulating properties of snow affect soil carbon distribution in the continental pan-Arctic area: SNOW INSULATION OF SOIL CARBON STOCKS
journal, June 2012

  • Gouttevin, I.; Menegoz, M.; Dominé, F.
  • Journal of Geophysical Research: Biogeosciences, Vol. 117, Issue G2
  • DOI: 10.1029/2011JG001916

Diagnosing Present and Future Permafrost from Climate Models
journal, August 2013


Potential carbon emissions dominated by carbon dioxide from thawed permafrost soils
journal, June 2016

  • Schädel, Christina; Bader, Martin K. -F.; Schuur, Edward A. G.
  • Nature Climate Change, Vol. 6, Issue 10
  • DOI: 10.1038/nclimate3054

Equilibrium responses of global net primary production and carbon storage to doubled atmospheric carbon dioxide: Sensitivity to changes in vegetation nitrogen concentration
journal, June 1997

  • McGuire, A. David; Melillo, Jerry M.; Kicklighter, David W.
  • Global Biogeochemical Cycles, Vol. 11, Issue 2
  • DOI: 10.1029/97GB00059

Toward more realistic projections of soil carbon dynamics by Earth system models: SOIL CARBON MODELING
journal, January 2016

  • Luo, Yiqi; Ahlström, Anders; Allison, Steven D.
  • Global Biogeochemical Cycles, Vol. 30, Issue 1
  • DOI: 10.1002/2015GB005239

Sensitivity of the carbon cycle in the Arctic to climate change
journal, November 2009

  • McGuire, A. David; Anderson, Leif G.; Christensen, Torben R.
  • Ecological Monographs, Vol. 79, Issue 4
  • DOI: 10.1890/08-2025.1

Evaluation of air–soil temperature relationships simulated by land surface models during winter across the permafrost region
journal, January 2016


The vegetation greenness trend in Canada and US Alaska from 1984–2012 Landsat data
journal, April 2016


Assessment of model estimates of land-atmosphere CO 2 exchange across Northern Eurasia
journal, January 2015


Is the northern high-latitude land-based CO 2 sink weakening? : THE HIGH-LATITUDE CO
journal, August 2011

  • Hayes, D. J.; McGuire, A. D.; Kicklighter, D. W.
  • Global Biogeochemical Cycles, Vol. 25, Issue 3
  • DOI: 10.1029/2010GB003813

Permafrost carbon-climate feedbacks accelerate global warming
journal, August 2011

  • Koven, C. D.; Ringeval, B.; Friedlingstein, P.
  • Proceedings of the National Academy of Sciences, Vol. 108, Issue 36
  • DOI: 10.1073/pnas.1103910108

Quantifying uncertainties of permafrost carbon–climate feedbacks
journal, January 2017


The Joint UK Land Environment Simulator (JULES), model description – Part 1: Energy and water fluxes
journal, January 2011

  • Best, M. J.; Pryor, M.; Clark, D. B.
  • Geoscientific Model Development, Vol. 4, Issue 3
  • DOI: 10.5194/gmd-4-677-2011

The representative concentration pathways: an overview
journal, August 2011


Analysis of Permafrost Thermal Dynamics and Response to Climate Change in the CMIP5 Earth System Models
journal, March 2013


Terrestrial ecosystem model performance in simulating productivity and its vulnerability to climate change in the northern permafrost region: Modeled Productivity in Permafrost Regions
journal, February 2017

  • Xia, Jianyang; McGuire, A. David; Lawrence, David
  • Journal of Geophysical Research: Biogeosciences, Vol. 122, Issue 2
  • DOI: 10.1002/2016JG003384

The effect of vertically resolved soil biogeochemistry and alternate soil C and N models on C dynamics of CLM4
journal, January 2013


Reduction in areal extent of high-latitude wetlands in response to permafrost thaw
journal, June 2011

  • Avis, Christopher A.; Weaver, Andrew J.; Meissner, Katrin J.
  • Nature Geoscience, Vol. 4, Issue 7
  • DOI: 10.1038/ngeo1160

The Role of Nitrogen in the Response of Forest Net Primary Production to Elevated Atmospheric Carbon Dioxide
journal, November 1995


The impacts of recent permafrost thaw on land–atmosphere greenhouse gas exchange
journal, April 2014

  • Hayes, Daniel J.; Kicklighter, David W.; McGuire, A. David
  • Environmental Research Letters, Vol. 9, Issue 4
  • DOI: 10.1088/1748-9326/9/4/045005

Simulation of Present-Day and Future Permafrost and Seasonally Frozen Ground Conditions in CCSM4
journal, April 2012

  • Lawrence, David M.; Slater, Andrew G.; Swenson, Sean C.
  • Journal of Climate, Vol. 25, Issue 7
  • DOI: 10.1175/JCLI-D-11-00334.1

Arctic browning: extreme events and trends reversing arctic greening
journal, April 2016

  • Phoenix, Gareth K.; Bjerke, Jarle W.
  • Global Change Biology, Vol. 22, Issue 9
  • DOI: 10.1111/gcb.13261

The contribution of snow condition trends to future ground climate
journal, February 2009


Description and basic evaluation of Beijing Normal University Earth System Model (BNU-ESM) version 1
journal, January 2014


Variability in the sensitivity among model simulations of permafrost and carbon dynamics in the permafrost region between 1960 and 2009: MODELING PERMAFROST CARBON DYNAMICS
journal, July 2016

  • McGuire, A. David; Koven, Charles; Lawrence, David M.
  • Global Biogeochemical Cycles, Vol. 30, Issue 7
  • DOI: 10.1002/2016GB005405

Sensitivity of a model projection of near-surface permafrost degradation to soil column depth and representation of soil organic matter
journal, January 2008

  • Lawrence, David M.; Slater, Andrew G.; Romanovsky, Vladimir E.
  • Journal of Geophysical Research, Vol. 113, Issue F2
  • DOI: 10.1029/2007JF000883

Tall shrub and tree expansion in Siberian tundra ecotones since the 1960s
journal, February 2014

  • Frost, Gerald V.; Epstein, Howard E.
  • Global Change Biology, Vol. 20, Issue 4
  • DOI: 10.1111/gcb.12406

    Works referencing / citing this record:

    The role of environmental driving factors in historical and projected carbon dynamics of wetland ecosystems in Alaska
    journal, December 2016

    • Lyu, Zhou; Genet, Hélène; He, Yujie
    • Ecological Applications, Vol. 28, Issue 6
    • DOI: 10.1002/eap.1755

    Assessing historical and projected carbon balance of Alaska: A synthesis of results and policy/management implications
    journal, July 2018

    • McGuire, A. David; Genet, Hélène; Lyu, Zhou
    • Ecological Applications, Vol. 28, Issue 6
    • DOI: 10.1002/eap.1768

    Increasing Organic Carbon Biolability With Depth in Yedoma Permafrost: Ramifications for Future Climate Change
    journal, July 2019

    • Heslop, J. K.; Winkel, M.; Walter Anthony, K. M.
    • Journal of Geophysical Research: Biogeosciences, Vol. 124, Issue 7
    • DOI: 10.1029/2018jg004712

    Path Independence of Carbon Budgets When Meeting a Stringent Global Mean Temperature Target After an Overshoot
    journal, December 2019

    • Tokarska, Katarzyna B.; Zickfeld, Kirsten; Rogelj, Joeri
    • Earth's Future, Vol. 7, Issue 12
    • DOI: 10.1029/2019ef001312

    The role of environmental driving factors in historical and projected carbon dynamics of wetland ecosystems in Alaska
    journal, December 2016

    • Lyu, Zhou; Genet, Hélène; He, Yujie
    • Ecological Applications, Vol. 28, Issue 6
    • DOI: 10.1002/eap.1755

    Assessing historical and projected carbon balance of Alaska: A synthesis of results and policy/management implications
    journal, July 2018

    • McGuire, A. David; Genet, Hélène; Lyu, Zhou
    • Ecological Applications, Vol. 28, Issue 6
    • DOI: 10.1002/eap.1768

    Increasing Organic Carbon Biolability With Depth in Yedoma Permafrost: Ramifications for Future Climate Change
    journal, July 2019

    • Heslop, J. K.; Winkel, M.; Walter Anthony, K. M.
    • Journal of Geophysical Research: Biogeosciences, Vol. 124, Issue 7
    • DOI: 10.1029/2018jg004712

    Path Independence of Carbon Budgets When Meeting a Stringent Global Mean Temperature Target After an Overshoot
    journal, December 2019

    • Tokarska, Katarzyna B.; Zickfeld, Kirsten; Rogelj, Joeri
    • Earth's Future, Vol. 7, Issue 12
    • DOI: 10.1029/2019ef001312

    Permafrost thawing puts the frozen carbon at risk over the Tibetan Plateau
    journal, May 2020