skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Insights into the Li Intercalation and SEI Formation on LiSi Nanoclusters

Abstract

We report a first-principles atomic level assessment of the lithiation and reactivity of pre-lithiated Si clusters. Density functional theory formation energy calculations reveal that the pre-lithiated Li 16Si 16 cluster exposed to two different Li fluxes can store Li between the concentrations of Li 2.5Si and Li 3.5Si. This increase in storage capacity is attributed to the start of an amorphization process in the cluster, and more importantly these results show that the intercalation reaction can be controlled by the flux of the Li-ions. However, in a real battery, the lithiation of the anode occurs simultaneously to the electrode-electrolyte reactions. Here we simulate the solid-electrolyte interphase (SEI) formation and simultaneous lithiation of a Li 16Si 16 cluster in contact with two different electrolyte solutions: one with pure ethylene carbonate (EC), and another with a 1 M solution of LiPF 6 in EC. Our ab initio molecular dynamics simulations show that the solvent and salt are decomposed leading to the initial stages of the SEI layer formation and large part of the added Li becomes part of the SEI. Interestingly, the pure EC solution results in lower storage capacity and higher reactivity, whereas the presence of the salt causes the oppositemore » effect: higher lithiation and reduced reactivity.« less

Authors:
 [1];  [1];  [2]
  1. Texas A & M Univ., College Station, TX (United States). Department of Chemical Engineering
  2. Texas A & M Univ., College Station, TX (United States). Department of Chemical Engineering, Department of Materials Science and Engineering, and Department of Chemistry
Publication Date:
Research Org.:
Texas A&M Engineering Experiment Station, College Station, TX (United States)
Sponsoring Org.:
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Vehicle Technologies Office (EE-3V)
OSTI Identifier:
1430637
Grant/Contract Number:  
EE0007766
Resource Type:
Journal Article: Accepted Manuscript
Journal Name:
Journal of the Electrochemical Society
Additional Journal Information:
Journal Volume: 164; Journal Issue: 11; Journal ID: ISSN 0013-4651
Publisher:
The Electrochemical Society
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE; 36 MATERIALS SCIENCE; ab initio molecular dynamics; density functional theory; irreversible capacity; lithiation; SEI; silicon anodes

Citation Formats

Hankins, Kie, Soto, Fernando A., and Balbuena, Perla B. Insights into the Li Intercalation and SEI Formation on LiSi Nanoclusters. United States: N. p., 2017. Web. doi:10.1149/2.0311711jes.
Hankins, Kie, Soto, Fernando A., & Balbuena, Perla B. Insights into the Li Intercalation and SEI Formation on LiSi Nanoclusters. United States. doi:10.1149/2.0311711jes.
Hankins, Kie, Soto, Fernando A., and Balbuena, Perla B. Sun . "Insights into the Li Intercalation and SEI Formation on LiSi Nanoclusters". United States. doi:10.1149/2.0311711jes. https://www.osti.gov/servlets/purl/1430637.
@article{osti_1430637,
title = {Insights into the Li Intercalation and SEI Formation on LiSi Nanoclusters},
author = {Hankins, Kie and Soto, Fernando A. and Balbuena, Perla B.},
abstractNote = {We report a first-principles atomic level assessment of the lithiation and reactivity of pre-lithiated Si clusters. Density functional theory formation energy calculations reveal that the pre-lithiated Li16Si16 cluster exposed to two different Li fluxes can store Li between the concentrations of Li2.5Si and Li3.5Si. This increase in storage capacity is attributed to the start of an amorphization process in the cluster, and more importantly these results show that the intercalation reaction can be controlled by the flux of the Li-ions. However, in a real battery, the lithiation of the anode occurs simultaneously to the electrode-electrolyte reactions. Here we simulate the solid-electrolyte interphase (SEI) formation and simultaneous lithiation of a Li16Si16 cluster in contact with two different electrolyte solutions: one with pure ethylene carbonate (EC), and another with a 1 M solution of LiPF6 in EC. Our ab initio molecular dynamics simulations show that the solvent and salt are decomposed leading to the initial stages of the SEI layer formation and large part of the added Li becomes part of the SEI. Interestingly, the pure EC solution results in lower storage capacity and higher reactivity, whereas the presence of the salt causes the opposite effect: higher lithiation and reduced reactivity.},
doi = {10.1149/2.0311711jes},
journal = {Journal of the Electrochemical Society},
issn = {0013-4651},
number = 11,
volume = 164,
place = {United States},
year = {2017},
month = {1}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 2 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

A Highly Cross-Linked Polymeric Binder for High-Performance Silicon Negative Electrodes in Lithium Ion Batteries
journal, July 2012

  • Koo, Bonjae; Kim, Hyunjung; Cho, Younghyun
  • Angewandte Chemie International Edition, Vol. 51, Issue 35
  • DOI: 10.1002/anie.201201568

Solid Electrolyte Interphase Growth and Capacity Loss in Silicon Electrodes
journal, June 2016

  • Michan, Alison L.; Divitini, Giorgio; Pell, Andrew J.
  • Journal of the American Chemical Society, Vol. 138, Issue 25
  • DOI: 10.1021/jacs.6b02882

Formation and Growth Mechanisms of Solid-Electrolyte Interphase Layers in Rechargeable Batteries
journal, November 2015


Kinetics and fracture resistance of lithiated silicon nanostructure pairs controlled by their mechanical interaction
journal, June 2015

  • Lee, Seok Woo; Lee, Hyun-Wook; Ryu, Ill
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms8533

Generalized gradient approximation for the exchange-correlation hole of a many-electron system
journal, December 1996


Advanced electrolyte/additive for lithium-ion batteries with silicon anode
journal, August 2016


Reduction Mechanisms of Ethylene Carbonate on Si Anodes of Lithium-Ion Batteries: Effects of Degree of Lithiation and Nature of Exposed Surface
journal, November 2013

  • Martinez de la Hoz, Julibeth M.; Leung, Kevin; Balbuena, Perla B.
  • ACS Applied Materials & Interfaces, Vol. 5, Issue 24
  • DOI: 10.1021/am404365r

Colossal Reversible Volume Changes in Lithium Alloys
journal, January 2001

  • Beaulieu, L. Y.; Eberman, K. W.; Turner, R. L.
  • Electrochemical and Solid-State Letters, Vol. 4, Issue 9
  • DOI: 10.1149/1.1388178

Ab-initio simulations of materials using VASP: Density-functional theory and beyond
journal, October 2008

  • Hafner, Jürgen
  • Journal of Computational Chemistry, Vol. 29, Issue 13
  • DOI: 10.1002/jcc.21057

Silicon Solid Electrolyte Interphase (SEI) of Lithium Ion Battery Characterized by Microscopy and Spectroscopy
journal, June 2013

  • Nie, Mengyun; Abraham, Daniel P.; Chen, Yanjing
  • The Journal of Physical Chemistry C, Vol. 117, Issue 26
  • DOI: 10.1021/jp404155y

Open Framework Allotropes of Silicon: Potential Anode Materials for Na and Li-ion Batteries
journal, July 2016


Lithium Insertion In Silicon Nanowires: An ab Initio Study
journal, September 2010

  • Zhang, Qianfan; Zhang, Wenxing; Wan, Wenhui
  • Nano Letters, Vol. 10, Issue 9
  • DOI: 10.1021/nl904132v

Synthesis of Single-Phase LiSi by Ball-Milling: Electrochemical Behavior and Hydrogenation Properties
journal, January 2013

  • Tang, Wan Si; Chotard, Jean-Noël; Janot, Raphaël
  • Journal of The Electrochemical Society, Vol. 160, Issue 8
  • DOI: 10.1149/2.089308jes

Anisotropic Lithium Insertion Behavior in Silicon Nanowires: Binding Energy, Diffusion Barrier, and Strain Effect
journal, April 2011

  • Zhang, Qianfan; Cui, Yi; Wang, Enge
  • The Journal of Physical Chemistry C, Vol. 115, Issue 19
  • DOI: 10.1021/jp1115977

Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
journal, October 1996


Li-Rich Li-Si Alloy As A Lithium-Containing Negative Electrode Material Towards High Energy Lithium-Ion Batteries
journal, January 2015

  • Iwamura, Shinichiroh; Nishihara, Hirotomo; Ono, Yoshitaka
  • Scientific Reports, Vol. 5, Issue 1
  • DOI: 10.1038/srep08085

From ultrasoft pseudopotentials to the projector augmented-wave method
journal, January 1999


The Mixing Mechanism during Lithiation of Si Negative Electrode in Li-Ion Batteries: An Ab Initio Molecular Dynamics Study
journal, December 2011

  • Johari, Priya; Qi, Yue; Shenoy, Vivek B.
  • Nano Letters, Vol. 11, Issue 12
  • DOI: 10.1021/nl203302d

Si-Based Anode Materials for Li-Ion Batteries: A Mini Review
journal, September 2014


Review on recent progress of nanostructured anode materials for Li-ion batteries
journal, July 2014


Scaling Atomic Partial Charges of Carbonate Solvents for Lithium Ion Solvation and Diffusion
journal, November 2016

  • Chaudhari, Mangesh I.; Nair, Jijeesh R.; Pratt, Lawrence R.
  • Journal of Chemical Theory and Computation, Vol. 12, Issue 12
  • DOI: 10.1021/acs.jctc.6b00824

Challenges in Accommodating Volume Change of Si Anodes for Li-Ion Batteries
journal, August 2015


Designing nanostructured Si anodes for high energy lithium ion batteries
journal, October 2012


RETRACTED ARTICLE: Theoretical Limits of Energy Density in Silicon-Carbon Composite Anode Based Lithium Ion Batteries
journal, June 2016

  • Dash, Ranjan; Pannala, Sreekanth
  • Scientific Reports, Vol. 6, Issue 1
  • DOI: 10.1038/srep27449

Nanostructured Si/TiB[sub 2] Composite Anodes for Li-Ion Batteries
journal, January 2003

  • Kim, Il-seok; Blomgren, G. E.; Kumta, P. N.
  • Electrochemical and Solid-State Letters, Vol. 6, Issue 8
  • DOI: 10.1149/1.1584212

Nanostructured materials for advanced energy conversion and storage devices
journal, May 2005

  • Aricò, Antonino Salvatore; Bruce, Peter; Scrosati, Bruno
  • Nature Materials, Vol. 4, Issue 5, p. 366-377
  • DOI: 10.1038/nmat1368

Breathing silicon anodes for durable high-power operations
journal, September 2015

  • Hwang, Chihyun; Joo, Sehun; Kang, Na-Ri
  • Scientific Reports, Vol. 5, Issue 1
  • DOI: 10.1038/srep14433

Effect of the Electrolyte Composition on SEI Reactions at Si Anodes of Li-Ion Batteries
journal, March 2015

  • Martinez de la Hoz, Julibeth M.; Soto, Fernando A.; Balbuena, Perla B.
  • The Journal of Physical Chemistry C, Vol. 119, Issue 13
  • DOI: 10.1021/acs.jpcc.5b01228

Fracture of crystalline silicon nanopillars during electrochemical lithium insertion
journal, February 2012

  • Lee, S. W.; McDowell, M. T.; Berla, L. A.
  • Proceedings of the National Academy of Sciences, Vol. 109, Issue 11
  • DOI: 10.1073/pnas.1201088109

A room temperature study of the binary lithium–silicon and the ternary lithium–chromium–silicon system for use in rechargeable lithium batteries
journal, September 1999


DFT Study of Reduction Mechanisms of Ethylene Carbonate and Fluoroethylene Carbonate on Li + -Adsorbed Si Clusters
journal, January 2014

  • Ma, Yuguang; Balbuena, Perla B.
  • Journal of The Electrochemical Society, Vol. 161, Issue 8
  • DOI: 10.1149/2.014408jes

Effect of Vinylene Carbonate Additive in Li-Ion Batteries: Comparison of LiCoO[sub 2]∕C, LiFePO[sub 4]∕C, and LiCoO[sub 2]∕Li[sub 4]Ti[sub 5]O[sub 12] Systems
journal, January 2009

  • El Ouatani, L.; Dedryvère, R.; Siret, C.
  • Journal of The Electrochemical Society, Vol. 156, Issue 6
  • DOI: 10.1149/1.3111891

Modeling solid-electrolyte interfacial phenomena in silicon anodes
journal, August 2016


Electrolytes and Interphases in Li-Ion Batteries and Beyond
journal, October 2014


Hybrid DFT Functional-Based Static and Molecular Dynamics Studies of Excess Electron in Liquid Ethylene Carbonate
journal, January 2011

  • Yu, Jiamei; Balbuena, Perla B.; Budzien, Joanne
  • Journal of The Electrochemical Society, Vol. 158, Issue 4
  • DOI: 10.1149/1.3545977

First-Principles Calculations of Lithiation of a Hydroxylated Surface of Amorphous Silicon Dioxide
journal, July 2015

  • Perez-Beltran, Saul; Ramírez-Caballero, Gustavo E.; Balbuena, Perla B.
  • The Journal of Physical Chemistry C, Vol. 119, Issue 29
  • DOI: 10.1021/acs.jpcc.5b02992

Theoretical Studies To Understand Surface Chemistry on Carbon Anodes for Lithium-Ion Batteries:  Reduction Mechanisms of Ethylene Carbonate
journal, November 2001

  • Wang, Yixuan; Nakamura, Shinichiro; Ue, Makoto
  • Journal of the American Chemical Society, Vol. 123, Issue 47
  • DOI: 10.1021/ja0164529

Structural Changes in Silicon Anodes during Lithium Insertion/Extraction
journal, January 2004

  • Obrovac, M. N.; Christensen, Leif
  • Electrochemical and Solid-State Letters, Vol. 7, Issue 5
  • DOI: 10.1149/1.1652421

Computational Studies of Interfacial Reactions at Anode Materials: Initial Stages of the Solid-Electrolyte-Interphase Layer Formation
journal, August 2016

  • Ramos-Sanchez, G.; Soto, F. A.; Martinez de la Hoz, J. M.
  • Journal of Electrochemical Energy Conversion and Storage, Vol. 13, Issue 3
  • DOI: 10.1115/1.4034412

Revision of the Li 13 Si 4 structure
journal, November 2013

  • Zeilinger, Michael; Fässler, Thomas F.
  • Acta Crystallographica Section E Structure Reports Online, Vol. 69, Issue 12
  • DOI: 10.1107/S1600536813029759

Reduction mechanisms of additives on Si anodes of Li-ion batteries
journal, January 2014

  • Martínez de la Hoz, Julibeth M.; Balbuena, Perla B.
  • Phys. Chem. Chem. Phys., Vol. 16, Issue 32
  • DOI: 10.1039/C4CP01948B

VMD: Visual molecular dynamics
journal, February 1996


Analysis of Vinylene Carbonate Derived SEI Layers on Graphite Anode
journal, January 2004

  • Ota, Hitoshi; Sakata, Yuuichi; Inoue, Atsuyoshi
  • Journal of The Electrochemical Society, Vol. 151, Issue 10
  • DOI: 10.1149/1.1785795

Structure and electronic properties of lithium–silicon clusters
journal, November 2013

  • González, Sebastián I.; Oña, Ofelia B.; Ferraro, Marta B.
  • Computational and Theoretical Chemistry, Vol. 1024
  • DOI: 10.1016/j.comptc.2013.09.019