skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Final Report UCLA-Thermochemical Storage with Anhydrous Ammonia

Technical Report ·
DOI:https://doi.org/10.2172/1425351· OSTI ID:1425351
 [1]
  1. Univ. of California, Los Angeles, CA (United States)

In ammonia-based thermochemical energy storage (TCES), ammonia is dissociated endothermically as it absorbs solar energy during the daytime. When energy is required, the reverse reaction releases energy to heat a working fluid such as steam, to produce electricity. Ammonia-based TCES has great advantages of simplicity, low cost reactants, and a strong industrial base in the conventional ammonia industry. The concept has been demonstrated over three decades of research at Australian National University, achieving a 24-hour demonstration of a complete system. At the start of this project, three challenges were identified that would have to be addressed to show that the system is technically and economically viable for incorporation into a CSP plant with an advanced, high temperature power block. All three of these challenges have now been addressed: 1. The ammonia synthesis reaction had not, to our knowledge, been carried out at temperatures consistent with modern power blocks (i.e., ~650°C). The technical feasibility of operating a reactor under high-temperature, near-equilibrium conditions was an unknown, and was therefore a technical risk. The project has successfully demonstrated steam heating to 650°C and energy recovery to steam at the 5 kWt level. 2. The ammonia system has a relatively low enthalpy of reaction combined with gas phase reactants. This is not a direct disadvantage since the reactants themselves are low cost. The challenge lies in storing the required volume of reactants cost effectively. Therefore, a second key goal was to show, through techno-economic analysis, that underground storage technologies can be used to store the energy-rich gas at a cost that is consistent with the SunShot cost goal. We have identified two promising technologies for gas storage: storage in salt caverns has an estimated cost of 1(USD)/kWht and storage in drilled shafts could be on the order of 7(USD)/kWht. Together these two options answer the technical challenge associated with storage of gas phase components. 3. While this project is primarily concerned with high-temperature heat recovery and methods to store the gaseous components, it is also important to consider the feasibility of the entire system. Consequently, an additional goal was to perform analysis to show the feasibility of integrating endothermic reactors within a tower receiver. A conceptual design of an ammonia dissociation receiver/reactor has been developed that fits into the same size cylindrical envelope as the molten salt receiver in SAM, and has the same design thermal capacity. The calculated thermal efficiency of this receiver is 94.6%. Thus, this investigation has established the technical feasibility of a surround field tower system using ammonia dissociation. With these challenges addressed, we proceeded to design a full-scale synthesis and heat recovery system. A model was developed and validated by comparison with our experimental data. A parametric study showed, among other things, the importance of using small tube diameters and spacing to enhance heat transfer. Multi-parameter optimization was used to find a design that minimizes the wall material volume. Finally, cost estimation shows that the ammonia system has good prospects of meeting the Sunshot 15(USD)/kWht target: estimated costs of the entire synthesis system for the 220 MWt plant with 6 hours of storage are 13(USD)/kWht using salt cavern storage and 18(USD)/kWht using shaft drilling. Costs per kWht are even lower with more hours of storage. With the established technology of ammonia synthesis as a starting point, the successes of the project have mitigated technical risks associated with high-temperature synthesis reaction, underground storage, and tower receiver design. Estimated costs are less than 15(USD)/kWht with salt cavern storage. It is now possible to map a time line to commercial deployment that is likely to be shorter and less risky than other thermochemical cycles under active investigation. UCLA has filed a patent that protects the new ideas developed during this project. Discussions are ongoing with potential investors with the aim of partnering for further work. As well as immediate improvements and extra work with the existing experimental system, a key goal is to extend it to a small solar-driven project at an early opportunity.

Research Organization:
Univ. of California, Los Angeles, CA (United States)
Sponsoring Organization:
USDOE Office of Energy Efficiency and Renewable Energy (EERE)
Contributing Organization:
IT Power Pty Ltd (Australia)
DOE Contract Number:
EE0006536
OSTI ID:
1425351
Report Number(s):
DE-EE0006536
Country of Publication:
United States
Language:
English