skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Femtosecond X-ray Fourier holography imaging of free-flying nanoparticles

Abstract

Ultrafast X-ray imaging on individual fragile specimens such as aerosols, metastable particles, superfluid quantum systems and live biospecimens provides high-resolution information that is inaccessible with conventional imaging techniques. Coherent X-ray diffractive imaging, however, suffers from intrinsic loss of phase, and therefore structure recovery is often complicated and not always uniquely defined. Here in this paper, we introduce the method of in-flight holography, where we use nanoclusters as reference X-ray scatterers to encode relative phase information into diffraction patterns of a virus. The resulting hologram contains an unambiguous three-dimensional map of a virus and two nanoclusters with the highest lateral resolution so far achieved via single shot X-ray holography. Our approach unlocks the benefits of holography for ultrafast X-ray imaging of nanoscale, non-periodic systems and paves the way to direct observation of complex electron dynamics down to the attosecond timescale.

Authors:
 [1];  [2];  [3];  [4];  [5];  [6];  [7];  [5]; ORCiD logo [5];  [8];  [9];  [7];  [10];  [11];  [5];  [11];  [5];  [7];  [5];  [2] more »;  [5];  [5];  [2];  [2]; ORCiD logo [5];  [5];  [12];  [5];  [11]; ORCiD logo [13];  [5];  [14];  [5]; ORCiD logo [7];  [15];  [2];  [16];  [17] « less
  1. Technische Univ. Berlin (Germany). Inst. fur Optik und Atomare Physik (IOAP); SLAC National Accelerator Lab., Menlo Park, CA (United States). Linac Coherent Light Source (LCLS); SLAC National Accelerator Lab., Menlo Park, CA (United States). Photon Ultrafast Laser Science and Engineering Inst. (PULSE)
  2. Technische Univ. Berlin (Germany). Inst. fur Optik und Atomare Physik (IOAP)
  3. SLAC National Accelerator Lab., Menlo Park, CA (United States). Linac Coherent Light Source (LCLS); SLAC National Accelerator Lab., Menlo Park, CA (United States). Photon Ultrafast Laser Science and Engineering Inst. (PULSE)
  4. Technische Univ. Berlin (Germany). Inst. fur Optik und Atomare Physik (IOAP); SLAC National Accelerator Lab., Menlo Park, CA (United States). Linac Coherent Light Source (LCLS); Argonne National Lab. (ANL), Argonne, IL (United States)
  5. Uppsala Univ. (Sweden). Dept. of Cell and Molecular Biology, Lab. of Molecular Biophysics
  6. Uppsala Univ. (Sweden). Dept. of Cell and Molecular Biology, Lab. of Molecular Biophysics; European X-ray Free-Electron Laser (XFEL), Hamburg (Germany)
  7. Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany). Center for Free-Electron Laser Science
  8. Uppsala Univ. (Sweden). Dept. of Cell and Molecular Biology, Lab. of Molecular Biophysics, and Science for Life Lab., Division of Scientific Computing, Dept. of Information Technology
  9. Uppsala Univ. (Sweden). Dept. of Cell and Molecular Biology, Lab. of Molecular Biophysics; Czech Academy of Science, Prague (Czech Republic). ELI Beamlines, Inst. of Physics; Chalmers Univ. of Technology, Gothenburg (Sweden)
  10. Czech Academy of Science, Prague (Czech Republic). ELI Beamlines, Inst. of Physics
  11. SLAC National Accelerator Lab., Menlo Park, CA (United States). Linac Coherent Light Source (LCLS)
  12. Uppsala Univ. (Sweden). Dept. of Cell and Molecular Biology, Lab. of Molecular Biophysics; KTH Royal Inst. of Technology, Stockholm (Sweden). AlbaNova Univ. Center, Dept. of Applied Physics, and Biomedical and X-ray Physics
  13. Uppsala Univ. (Sweden). Dept. of Cell and Molecular Biology, Lab. of Molecular Biophysics, and Dept. of Physics and Astronomy
  14. SLAC National Accelerator Lab., Menlo Park, CA (United States). Linac Coherent Light Source (LCLS); Brookhaven National Lab. (BNL), Upton, NY (United States). National Synchrotron Light Source II (NSLS-II)
  15. Research Inst. for Solid State Physics and Optics, Budapest (Hungary)
  16. Uppsala Univ. (Sweden). Dept. of Cell and Molecular Biology, Lab. of Molecular Biophysics; European X-ray Free-Electron Laser (XFEL), Hamburg (Germany); Czech Academy of Science, Prague (Czech Republic). ELI Beamlines, Inst. of Physics
  17. SLAC National Accelerator Lab., Menlo Park, CA (United States). Linac Coherent Light Source (LCLS); SLAC National Accelerator Lab., Menlo Park, CA (United States). Photon Ultrafast Laser Science and Engineering Inst. (PULSE); Argonne National Lab. (ANL), Argonne, IL (United States); Northwestern Univ., Evanston, IL (United States). Dept. of Physics
Publication Date:
Research Org.:
SLAC National Accelerator Lab., Menlo Park, CA (United States); Argonne National Lab. (ANL), Argonne, IL (United States); Brookhaven National Lab. (BNL), Upton, NY (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22). Chemical Sciences, Geosciences & Biosciences Division; German Federal Ministry of Education and Research (BMBF); German Research Foundation (DFG); Swedish Research Council (SRC); USDOE
OSTI Identifier:
1425332
Alternate Identifier(s):
OSTI ID: 1423121; OSTI ID: 1433977
Report Number(s):
SLAC-PUB-17234; BNL-203512-2018-JAAM
Journal ID: ISSN 1749-4885; PII: 110; TRN: US1801707
Grant/Contract Number:  
AC02-76SF00515; AC02-06CH11357; SC0012704
Resource Type:
Journal Article: Accepted Manuscript
Journal Name:
Nature Photonics
Additional Journal Information:
Journal Volume: 12; Journal Issue: 3; Journal ID: ISSN 1749-4885
Publisher:
Nature Publishing Group
Country of Publication:
United States
Language:
English
Subject:
71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; 77 NANOSCIENCE AND NANOTECHNOLOGY; Ultrafast photonics; X-rays; Imaging and sensing; Nanoparticles

Citation Formats

Gorkhover, Tais, Ulmer, Anatoli, Ferguson, Ken, Bucher, Max, Maia, Filipe R. N. C., Bielecki, Johan, Ekeberg, Tomas, Hantke, Max F., Daurer, Benedikt J., Nettelblad, Carl, Andreasson, Jakob, Barty, Anton, Bruza, Petr, Carron, Sebastian, Hasse, Dirk, Krzywinski, Jacek, Larsson, Daniel S. D., Morgan, Andrew, Mühlig, Kerstin, Müller, Maria, Okamoto, Kenta, Pietrini, Alberto, Rupp, Daniela, Sauppe, Mario, van der Schot, Gijs, Seibert, Marvin, Sellberg, Jonas A., Svenda, Martin, Swiggers, Michelle, Timneanu, Nicusor, Westphal, Daniel, Williams, Garth, Zani, Alessandro, Chapman, Henry N., Faigel, Gyula, Möller, Thomas, Hajdu, Janos, and Bostedt, Christoph. Femtosecond X-ray Fourier holography imaging of free-flying nanoparticles. United States: N. p., 2018. Web. doi:10.1038/s41566-018-0110-y.
Gorkhover, Tais, Ulmer, Anatoli, Ferguson, Ken, Bucher, Max, Maia, Filipe R. N. C., Bielecki, Johan, Ekeberg, Tomas, Hantke, Max F., Daurer, Benedikt J., Nettelblad, Carl, Andreasson, Jakob, Barty, Anton, Bruza, Petr, Carron, Sebastian, Hasse, Dirk, Krzywinski, Jacek, Larsson, Daniel S. D., Morgan, Andrew, Mühlig, Kerstin, Müller, Maria, Okamoto, Kenta, Pietrini, Alberto, Rupp, Daniela, Sauppe, Mario, van der Schot, Gijs, Seibert, Marvin, Sellberg, Jonas A., Svenda, Martin, Swiggers, Michelle, Timneanu, Nicusor, Westphal, Daniel, Williams, Garth, Zani, Alessandro, Chapman, Henry N., Faigel, Gyula, Möller, Thomas, Hajdu, Janos, & Bostedt, Christoph. Femtosecond X-ray Fourier holography imaging of free-flying nanoparticles. United States. doi:10.1038/s41566-018-0110-y.
Gorkhover, Tais, Ulmer, Anatoli, Ferguson, Ken, Bucher, Max, Maia, Filipe R. N. C., Bielecki, Johan, Ekeberg, Tomas, Hantke, Max F., Daurer, Benedikt J., Nettelblad, Carl, Andreasson, Jakob, Barty, Anton, Bruza, Petr, Carron, Sebastian, Hasse, Dirk, Krzywinski, Jacek, Larsson, Daniel S. D., Morgan, Andrew, Mühlig, Kerstin, Müller, Maria, Okamoto, Kenta, Pietrini, Alberto, Rupp, Daniela, Sauppe, Mario, van der Schot, Gijs, Seibert, Marvin, Sellberg, Jonas A., Svenda, Martin, Swiggers, Michelle, Timneanu, Nicusor, Westphal, Daniel, Williams, Garth, Zani, Alessandro, Chapman, Henry N., Faigel, Gyula, Möller, Thomas, Hajdu, Janos, and Bostedt, Christoph. Mon . "Femtosecond X-ray Fourier holography imaging of free-flying nanoparticles". United States. doi:10.1038/s41566-018-0110-y.
@article{osti_1425332,
title = {Femtosecond X-ray Fourier holography imaging of free-flying nanoparticles},
author = {Gorkhover, Tais and Ulmer, Anatoli and Ferguson, Ken and Bucher, Max and Maia, Filipe R. N. C. and Bielecki, Johan and Ekeberg, Tomas and Hantke, Max F. and Daurer, Benedikt J. and Nettelblad, Carl and Andreasson, Jakob and Barty, Anton and Bruza, Petr and Carron, Sebastian and Hasse, Dirk and Krzywinski, Jacek and Larsson, Daniel S. D. and Morgan, Andrew and Mühlig, Kerstin and Müller, Maria and Okamoto, Kenta and Pietrini, Alberto and Rupp, Daniela and Sauppe, Mario and van der Schot, Gijs and Seibert, Marvin and Sellberg, Jonas A. and Svenda, Martin and Swiggers, Michelle and Timneanu, Nicusor and Westphal, Daniel and Williams, Garth and Zani, Alessandro and Chapman, Henry N. and Faigel, Gyula and Möller, Thomas and Hajdu, Janos and Bostedt, Christoph},
abstractNote = {Ultrafast X-ray imaging on individual fragile specimens such as aerosols, metastable particles, superfluid quantum systems and live biospecimens provides high-resolution information that is inaccessible with conventional imaging techniques. Coherent X-ray diffractive imaging, however, suffers from intrinsic loss of phase, and therefore structure recovery is often complicated and not always uniquely defined. Here in this paper, we introduce the method of in-flight holography, where we use nanoclusters as reference X-ray scatterers to encode relative phase information into diffraction patterns of a virus. The resulting hologram contains an unambiguous three-dimensional map of a virus and two nanoclusters with the highest lateral resolution so far achieved via single shot X-ray holography. Our approach unlocks the benefits of holography for ultrafast X-ray imaging of nanoscale, non-periodic systems and paves the way to direct observation of complex electron dynamics down to the attosecond timescale.},
doi = {10.1038/s41566-018-0110-y},
journal = {Nature Photonics},
number = 3,
volume = 12,
place = {United States},
year = {Mon Feb 26 00:00:00 EST 2018},
month = {Mon Feb 26 00:00:00 EST 2018}
}

Journal Article:
Free Publicly Available Full Text
This content will become publicly available on February 26, 2019
Publisher's Version of Record

Save / Share: