skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Thermal detection of single e-h pairs in a biased silicon crystal detector

Abstract

We demonstrate that individual electron-hole pairs are resolved in a 1 cm 2 by 4 mm thick silicon crystal (0.93 g) operated at ~35 mK. One side of the detector is patterned with two quasiparticle-trap-assisted electro-thermal-feedback transition edge sensor arrays held near ground potential. The other side contains a bias grid with 20% coverage. Bias potentials up to ±160 V were used in the work reported here. A fiber optic provides 650 nm (1.9 eV) photons that each produce an electron-hole (e h +) pair in the crystal near the grid. The energy of the drifting charges is measured with a phonon sensor noise σ ~0.09 e h + pair. In conclusion, the observed charge quantization is nearly identical for h +s or e s transported across the crystal.

Authors:
 [1];  [2];  [3];  [2];  [1]; ORCiD logo [3];  [1]; ORCiD logo [2]; ORCiD logo [1];  [4];  [2];  [1];  [1];  [5]
  1. Stanford Univ., CA (United States). Dept. of Physics
  2. SLAC National Accelerator Lab., Menlo Park, CA (United States). Kavli Inst.for Particle Astrophysics and Cosmology
  3. Stanford Univ., CA (United States). Dept. of Physics; SLAC National Accelerator Lab., Menlo Park, CA (United States). Kavli Inst.for Particle Astrophysics and Cosmology
  4. Univ. of California, Berkeley, CA (United States). Dept. of Physics
  5. Santa Clara Univ., Santa Clara, CA (United States). Dept. of Physics
Publication Date:
Research Org.:
SLAC National Accelerator Lab., Menlo Park, CA (United States)
Sponsoring Org.:
USDOE; National Science Foundation (NSF)
OSTI Identifier:
1424717
Alternate Identifier(s):
OSTI ID: 1417769
Grant/Contract Number:  
AC02-76SF00515
Resource Type:
Journal Article: Accepted Manuscript
Journal Name:
Applied Physics Letters
Additional Journal Information:
Journal Volume: 112; Journal Issue: 4; Journal ID: ISSN 0003-6951
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE

Citation Formats

Romani, R. K., Brink, P. L., Cabrera, B., Cherry, M., Howarth, T., Kurinsky, N., Moffatt, R. A., Partridge, R., Ponce, F., Pyle, M., Tomada, A., Yellin, S., Yen, J. J., and Young, B. A.. Thermal detection of single e-h pairs in a biased silicon crystal detector. United States: N. p., 2018. Web. doi:10.1063/1.5010699.
Romani, R. K., Brink, P. L., Cabrera, B., Cherry, M., Howarth, T., Kurinsky, N., Moffatt, R. A., Partridge, R., Ponce, F., Pyle, M., Tomada, A., Yellin, S., Yen, J. J., & Young, B. A.. Thermal detection of single e-h pairs in a biased silicon crystal detector. United States. doi:10.1063/1.5010699.
Romani, R. K., Brink, P. L., Cabrera, B., Cherry, M., Howarth, T., Kurinsky, N., Moffatt, R. A., Partridge, R., Ponce, F., Pyle, M., Tomada, A., Yellin, S., Yen, J. J., and Young, B. A.. Tue . "Thermal detection of single e-h pairs in a biased silicon crystal detector". United States. doi:10.1063/1.5010699.
@article{osti_1424717,
title = {Thermal detection of single e-h pairs in a biased silicon crystal detector},
author = {Romani, R. K. and Brink, P. L. and Cabrera, B. and Cherry, M. and Howarth, T. and Kurinsky, N. and Moffatt, R. A. and Partridge, R. and Ponce, F. and Pyle, M. and Tomada, A. and Yellin, S. and Yen, J. J. and Young, B. A.},
abstractNote = {We demonstrate that individual electron-hole pairs are resolved in a 1 cm2 by 4 mm thick silicon crystal (0.93 g) operated at ~35 mK. One side of the detector is patterned with two quasiparticle-trap-assisted electro-thermal-feedback transition edge sensor arrays held near ground potential. The other side contains a bias grid with 20% coverage. Bias potentials up to ±160 V were used in the work reported here. A fiber optic provides 650 nm (1.9 eV) photons that each produce an electron-hole (e–h+) pair in the crystal near the grid. The energy of the drifting charges is measured with a phonon sensor noise σ ~0.09 e– h+ pair. In conclusion, the observed charge quantization is nearly identical for h+s or e–s transported across the crystal.},
doi = {10.1063/1.5010699},
journal = {Applied Physics Letters},
number = 4,
volume = 112,
place = {United States},
year = {Tue Jan 23 00:00:00 EST 2018},
month = {Tue Jan 23 00:00:00 EST 2018}
}

Journal Article:
Free Publicly Available Full Text
This content will become publicly available on January 23, 2019
Publisher's Version of Record

Citation Metrics:
Cited by: 3 works
Citation information provided by
Web of Science

Save / Share: