skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Laboratory evidence of dynamo amplification of magnetic fields in a turbulent plasma

Abstract

Magnetic fields are ubiquitous in the Universe. The energy density of these fields is typically comparable to the energy density of the fluid motions of the plasma in which they are embedded, making magnetic fields essential players in the dynamics of the luminous matter. The standard theoretical model for the origin of these strong magnetic fields is through the amplification of tiny seed fields via turbulent dynamo to the level consistent with current observations. However, experimental demonstration of the turbulent dynamo mechanism has remained elusive, since it requires plasma conditions that are extremely hard to re-create in terrestrial laboratories. Here in this paper, we demonstrate, using laser-produced colliding plasma flows, that turbulence is indeed capable of rapidly amplifying seed fields to near equipartition with the turbulent fluid motions. These results support the notion that turbulent dynamo is a viable mechanism responsible for the observed present-day magnetization.

Authors:
 [1]; ORCiD logo [2];  [2];  [2];  [3];  [4];  [5];  [6];  [7];  [8];  [9];  [10];  [5];  [11];  [12];  [13];  [2];  [13];  [7];  [7] more »;  [7]; ORCiD logo [14];  [7];  [2]; ORCiD logo [15];  [16];  [2];  [5];  [11]; ORCiD logo [1] « less
  1. Univ. of Oxford (United Kingdom). Dept. of Physics; Univ. of Chicago, IL (United States). Dept. of Astronomy and Astrophysics
  2. Univ. of Oxford (United Kingdom). Dept. of Physics
  3. Science and Technology Facilities Council (STFC), Oxford (United Kingdom). Rutherford Appleton Lab. (RAL); Univ. of Strathclyde, Glasgow (United Kingdom). Dept. of Physics
  4. Alternative Energies and Atomic Energy Commission (CEA), Arpajon (France). Dept. of the Military Applications (DAM)
  5. Univ. of Chicago, IL (United States). Dept. of Astronomy and Astrophysics
  6. Max Planck Inst. for Astrophysics, Garching (Germany)
  7. Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
  8. SLAC National Accelerator Lab., Menlo Park, CA (United States)
  9. Univ. of Wisconsin, Madison, WI (United States). Physics Dept.
  10. AWE, Aldermaston, Reading, West Berkshire (United Kingdom)
  11. Univ. of Rochester, NY (United States). Lab. for Laser Energetics
  12. Ecole Polytechnique, Palaiseau (France). Laboratoire pour l'Utilisation des Lasers Intenses (LULI)
  13. Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)
  14. Ulsan National Inst. of Science and Technology (UNIST), Ulsan (Korea). Dept. of Physics
  15. Queens Univ., Belfast (United Kingdom). School of Mathematics and Physics
  16. Federal Inst. of Technology, Zurich (Switzerland). Dept. of Physics
Publication Date:
Research Org.:
SLAC National Accelerator Lab., Menlo Park, CA (United States)
Sponsoring Org.:
USDOE; European Union (EU); National Science Foundation (NSF)
OSTI Identifier:
1423569
Grant/Contract Number:
AC02-76SF00515; B591485; NA0002724; SC0016566; NA0001944; NA0003539; PHY-1619573; AC02-06CH11357; EP/M022331/1; EP/N014472/1
Resource Type:
Journal Article: Accepted Manuscript
Journal Name:
Nature Communications
Additional Journal Information:
Journal Volume: 9; Journal Issue: 1; Journal ID: ISSN 2041-1723
Publisher:
Nature Publishing Group
Country of Publication:
United States
Language:
English
Subject:
70 PLASMA PHYSICS AND FUSION TECHNOLOGY; Interstellar medium; Laser-produced plasmas

Citation Formats

Tzeferacos, P., Rigby, A., Bott, A. F. A., Bell, A. R., Bingham, R., Casner, A., Cattaneo, F., Churazov, E. M., Emig, J., Fiuza, F., Forest, C. B., Foster, J., Graziani, C., Katz, J., Koenig, M., Li, C. -K., Meinecke, J., Petrasso, R., Park, H. -S., Remington, B. A., Ross, J. S., Ryu, D., Ryutov, D., White, T. G., Reville, B., Miniati, F., Schekochihin, A. A., Lamb, D. Q., Froula, D. H., and Gregori, G.. Laboratory evidence of dynamo amplification of magnetic fields in a turbulent plasma. United States: N. p., 2018. Web. doi:10.1038/s41467-018-02953-2.
Tzeferacos, P., Rigby, A., Bott, A. F. A., Bell, A. R., Bingham, R., Casner, A., Cattaneo, F., Churazov, E. M., Emig, J., Fiuza, F., Forest, C. B., Foster, J., Graziani, C., Katz, J., Koenig, M., Li, C. -K., Meinecke, J., Petrasso, R., Park, H. -S., Remington, B. A., Ross, J. S., Ryu, D., Ryutov, D., White, T. G., Reville, B., Miniati, F., Schekochihin, A. A., Lamb, D. Q., Froula, D. H., & Gregori, G.. Laboratory evidence of dynamo amplification of magnetic fields in a turbulent plasma. United States. doi:10.1038/s41467-018-02953-2.
Tzeferacos, P., Rigby, A., Bott, A. F. A., Bell, A. R., Bingham, R., Casner, A., Cattaneo, F., Churazov, E. M., Emig, J., Fiuza, F., Forest, C. B., Foster, J., Graziani, C., Katz, J., Koenig, M., Li, C. -K., Meinecke, J., Petrasso, R., Park, H. -S., Remington, B. A., Ross, J. S., Ryu, D., Ryutov, D., White, T. G., Reville, B., Miniati, F., Schekochihin, A. A., Lamb, D. Q., Froula, D. H., and Gregori, G.. Fri . "Laboratory evidence of dynamo amplification of magnetic fields in a turbulent plasma". United States. doi:10.1038/s41467-018-02953-2. https://www.osti.gov/servlets/purl/1423569.
@article{osti_1423569,
title = {Laboratory evidence of dynamo amplification of magnetic fields in a turbulent plasma},
author = {Tzeferacos, P. and Rigby, A. and Bott, A. F. A. and Bell, A. R. and Bingham, R. and Casner, A. and Cattaneo, F. and Churazov, E. M. and Emig, J. and Fiuza, F. and Forest, C. B. and Foster, J. and Graziani, C. and Katz, J. and Koenig, M. and Li, C. -K. and Meinecke, J. and Petrasso, R. and Park, H. -S. and Remington, B. A. and Ross, J. S. and Ryu, D. and Ryutov, D. and White, T. G. and Reville, B. and Miniati, F. and Schekochihin, A. A. and Lamb, D. Q. and Froula, D. H. and Gregori, G.},
abstractNote = {Magnetic fields are ubiquitous in the Universe. The energy density of these fields is typically comparable to the energy density of the fluid motions of the plasma in which they are embedded, making magnetic fields essential players in the dynamics of the luminous matter. The standard theoretical model for the origin of these strong magnetic fields is through the amplification of tiny seed fields via turbulent dynamo to the level consistent with current observations. However, experimental demonstration of the turbulent dynamo mechanism has remained elusive, since it requires plasma conditions that are extremely hard to re-create in terrestrial laboratories. Here in this paper, we demonstrate, using laser-produced colliding plasma flows, that turbulence is indeed capable of rapidly amplifying seed fields to near equipartition with the turbulent fluid motions. These results support the notion that turbulent dynamo is a viable mechanism responsible for the observed present-day magnetization.},
doi = {10.1038/s41467-018-02953-2},
journal = {Nature Communications},
number = 1,
volume = 9,
place = {United States},
year = {Fri Feb 09 00:00:00 EST 2018},
month = {Fri Feb 09 00:00:00 EST 2018}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Save / Share: