skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Development of Integrated Die Casting Process for Large Thin-Wall Magnesium Applications

Abstract

The purpose of this project was to develop a process and product which would utilize magnesium die casting and result in energy savings when compared to the baseline steel product. The specific product chosen was a side door inner panel for a mid-size car. The scope of the project included: re-design of major structural parts of the door, design and build of the tooling required to make the parts, making of parts, assembly of doors, and testing (both physical and simulation) of doors. Additional work was done on alloy development, vacuum die casting, and overcasting, all in order to improve the performance of the doors and reduce cost. The project achieved the following objectives: 1. Demonstrated ability to design a large thin-wall magnesium die casting. 2. Demonstrated ability to manufacture a large thin-wall magnesium die casting in AM60 alloy. 3. Tested via simulations and/or physical tests the mechanical behavior and corrosion behavior of magnesium die castings and/or lightweight experimental automotive side doors which incorporate a large, thin-wall, powder coated, magnesium die casting. Under some load cases, the results revealed cracking of the casting, which can be addressed with re-design and better material models for CAE analysis. No corrosion of themore » magnesium panel was observed. 4. Using life cycle analysis models, compared the energy consumption and global warming potential of the lightweight door with those of a conventional steel door, both during manufacture and in service. Compared to a steel door, the lightweight door requires more energy to manufacture but less energy during operation (i.e., fuel consumption when driving vehicle). Similarly, compared to a steel door, the lightweight door has higher global warming potential (GWP) during manufacture, but lower GWP during operation. 5. Compared the conventional magnesium die casting process with the “super-vacuum” die casting process. Results achieved with cast tensile bars suggest some improvement in tensile properties with vacuum casting. Plant trials with large castings revealed cavity fill issues attributed to cooling and partial solidification of metal in the shot sleeve while waiting for vacuum to be established in the die cavity. 6. Developed age-hardenable Mg-based alloys as potential alternatives to the AM60 and AZ91 alloys typically used in automotive applications. Mg-7%Al-based alloys having Sn or Sn+Si additions exhibited significant age hardening, but more work is needed to demonstrate significant improvement in tensile properties. Corrosion behavior of these alloys is between those of AM60 and AZ91 alloys. 7. Evaluated the die casting of magnesium directly onto either steel or aluminum tubes as a potential process to make large lightweight subassemblies. Samples were free of gross defects, but additional work is needed to increase the interfacial shear strength. Overall, the project demonstrated that an automotive door-in-white design incorporating a die cast magnesium inner panel and a stamped aluminum outer panel can achieve approximately 50% mass reduction compared to the stamped steel baseline door-in-white. This leads to reduced energy consumption when driving the vehicle, which should more than offset the increased embedded energy of manufacture associated with the lighter metals. However, additional design work would be needed in order to meet the mechanical performance required of a door. Development of high-strength, high-ductility magnesium alloy castings would help make this technology more attractive for potential use in the side doors on automobiles. Also, increased use of recycled magnesium and aluminum would reduce the embedded energy and greenhouse gas emissions associated with the manufacture of this type of lightweight door. Commercialization planning of the type of lightweight door technology addressed in this project would be contingent upon the doors meeting all technical performance requirements of the car maker. The specific lightweight door developed in this project didn’t meet some of those requirements, but a preliminary business case study was conducted anyhow. This study considered the ratio of cost increase to mass decrease when the lightweight door is compared to a baseline steel door. The ratio was found to be in an acceptable range for some vehicle programs, especially if the number of such vehicles to be produced is equal to or slightly less than the estimated 250,000-shot life of the die set. This would allow for the investment in the dies to be spread across many parts and thereby help minimize the cost increase.« less

Authors:
 [1];  [2];  [1]
  1. General Motors LLC, Warren, MI (United States)
  2. Meridian Lightweight Technologies, Plymouth MI (United States)
Publication Date:
Research Org.:
General Motors LLC, Warren, MI 48090
Sponsoring Org.:
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Advanced Manufacturing Office (EE-5A)
Contributing Org.:
EDAG Engineering, Duggan Manufacturing, Camanoe Associates
OSTI Identifier:
1421607
Report Number(s):
DOE-GM-0005753
DOE Contract Number:  
EE0005753
Resource Type:
Technical Report
Country of Publication:
United States
Language:
English
Subject:
32 ENERGY CONSERVATION, CONSUMPTION, AND UTILIZATION; 36 MATERIALS SCIENCE; 42 ENGINEERING; magnesium; lightweight; car; door; die casting; embedded energy; life cycle analysis; AM60; AT72; overcasting; vacuum die casting

Citation Formats

Carter, Jon T., Wang, Gerry, and Luo, Alan. Development of Integrated Die Casting Process for Large Thin-Wall Magnesium Applications. United States: N. p., 2017. Web. doi:10.2172/1421607.
Carter, Jon T., Wang, Gerry, & Luo, Alan. Development of Integrated Die Casting Process for Large Thin-Wall Magnesium Applications. United States. doi:10.2172/1421607.
Carter, Jon T., Wang, Gerry, and Luo, Alan. Wed . "Development of Integrated Die Casting Process for Large Thin-Wall Magnesium Applications". United States. doi:10.2172/1421607. https://www.osti.gov/servlets/purl/1421607.
@article{osti_1421607,
title = {Development of Integrated Die Casting Process for Large Thin-Wall Magnesium Applications},
author = {Carter, Jon T. and Wang, Gerry and Luo, Alan},
abstractNote = {The purpose of this project was to develop a process and product which would utilize magnesium die casting and result in energy savings when compared to the baseline steel product. The specific product chosen was a side door inner panel for a mid-size car. The scope of the project included: re-design of major structural parts of the door, design and build of the tooling required to make the parts, making of parts, assembly of doors, and testing (both physical and simulation) of doors. Additional work was done on alloy development, vacuum die casting, and overcasting, all in order to improve the performance of the doors and reduce cost. The project achieved the following objectives: 1. Demonstrated ability to design a large thin-wall magnesium die casting. 2. Demonstrated ability to manufacture a large thin-wall magnesium die casting in AM60 alloy. 3. Tested via simulations and/or physical tests the mechanical behavior and corrosion behavior of magnesium die castings and/or lightweight experimental automotive side doors which incorporate a large, thin-wall, powder coated, magnesium die casting. Under some load cases, the results revealed cracking of the casting, which can be addressed with re-design and better material models for CAE analysis. No corrosion of the magnesium panel was observed. 4. Using life cycle analysis models, compared the energy consumption and global warming potential of the lightweight door with those of a conventional steel door, both during manufacture and in service. Compared to a steel door, the lightweight door requires more energy to manufacture but less energy during operation (i.e., fuel consumption when driving vehicle). Similarly, compared to a steel door, the lightweight door has higher global warming potential (GWP) during manufacture, but lower GWP during operation. 5. Compared the conventional magnesium die casting process with the “super-vacuum” die casting process. Results achieved with cast tensile bars suggest some improvement in tensile properties with vacuum casting. Plant trials with large castings revealed cavity fill issues attributed to cooling and partial solidification of metal in the shot sleeve while waiting for vacuum to be established in the die cavity. 6. Developed age-hardenable Mg-based alloys as potential alternatives to the AM60 and AZ91 alloys typically used in automotive applications. Mg-7%Al-based alloys having Sn or Sn+Si additions exhibited significant age hardening, but more work is needed to demonstrate significant improvement in tensile properties. Corrosion behavior of these alloys is between those of AM60 and AZ91 alloys. 7. Evaluated the die casting of magnesium directly onto either steel or aluminum tubes as a potential process to make large lightweight subassemblies. Samples were free of gross defects, but additional work is needed to increase the interfacial shear strength. Overall, the project demonstrated that an automotive door-in-white design incorporating a die cast magnesium inner panel and a stamped aluminum outer panel can achieve approximately 50% mass reduction compared to the stamped steel baseline door-in-white. This leads to reduced energy consumption when driving the vehicle, which should more than offset the increased embedded energy of manufacture associated with the lighter metals. However, additional design work would be needed in order to meet the mechanical performance required of a door. Development of high-strength, high-ductility magnesium alloy castings would help make this technology more attractive for potential use in the side doors on automobiles. Also, increased use of recycled magnesium and aluminum would reduce the embedded energy and greenhouse gas emissions associated with the manufacture of this type of lightweight door. Commercialization planning of the type of lightweight door technology addressed in this project would be contingent upon the doors meeting all technical performance requirements of the car maker. The specific lightweight door developed in this project didn’t meet some of those requirements, but a preliminary business case study was conducted anyhow. This study considered the ratio of cost increase to mass decrease when the lightweight door is compared to a baseline steel door. The ratio was found to be in an acceptable range for some vehicle programs, especially if the number of such vehicles to be produced is equal to or slightly less than the estimated 250,000-shot life of the die set. This would allow for the investment in the dies to be spread across many parts and thereby help minimize the cost increase.},
doi = {10.2172/1421607},
journal = {},
number = ,
volume = ,
place = {United States},
year = {2017},
month = {11}
}