skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Porous Carbon-Hosted Atomically Dispersed Iron-Nitrogen Moiety as Enhanced Electrocatalysts for Oxygen Reduction Reaction in a Wide Range of pH

Authors:
 [1];  [2];  [3];  [1];  [4];  [1];  [5];  [2]; ORCiD logo [1]
  1. School of Mechanical and Materials Engineering, Washington State University, WA 99164 USA
  2. School of Mechanical and Materials Engineering, Washington State University, WA 99164 USA, Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry Central China Normal University, Wuhan 430079 P. R. China
  3. Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton NY 11973 USA
  4. Chemistry Department, Brookhaven National Laboratory, Upton NY 11973 USA
  5. Environmental Molecular Science Laboratory, Pacific Northwest National Laboratory, Richland WA 99354 USA
Publication Date:
Sponsoring Org.:
USDOE Office of Science (SC), Biological and Environmental Research (BER) (SC-23)
OSTI Identifier:
1420179
Grant/Contract Number:
AC05-76RL01830
Resource Type:
Journal Article: Publisher's Accepted Manuscript
Journal Name:
Small
Additional Journal Information:
Related Information: CHORUS Timestamp: 2018-02-12 01:49:11; Journal ID: ISSN 1613-6810
Publisher:
Wiley Blackwell (John Wiley & Sons)
Country of Publication:
Germany
Language:
English

Citation Formats

Fu, Shaofang, Zhu, Chengzhou, Su, Dong, Song, Junhua, Yao, Siyu, Feng, Shuo, Engelhard, Mark H., Du, Dan, and Lin, Yuehe. Porous Carbon-Hosted Atomically Dispersed Iron-Nitrogen Moiety as Enhanced Electrocatalysts for Oxygen Reduction Reaction in a Wide Range of pH. Germany: N. p., 2018. Web. doi:10.1002/smll.201703118.
Fu, Shaofang, Zhu, Chengzhou, Su, Dong, Song, Junhua, Yao, Siyu, Feng, Shuo, Engelhard, Mark H., Du, Dan, & Lin, Yuehe. Porous Carbon-Hosted Atomically Dispersed Iron-Nitrogen Moiety as Enhanced Electrocatalysts for Oxygen Reduction Reaction in a Wide Range of pH. Germany. doi:10.1002/smll.201703118.
Fu, Shaofang, Zhu, Chengzhou, Su, Dong, Song, Junhua, Yao, Siyu, Feng, Shuo, Engelhard, Mark H., Du, Dan, and Lin, Yuehe. 2018. "Porous Carbon-Hosted Atomically Dispersed Iron-Nitrogen Moiety as Enhanced Electrocatalysts for Oxygen Reduction Reaction in a Wide Range of pH". Germany. doi:10.1002/smll.201703118.
@article{osti_1420179,
title = {Porous Carbon-Hosted Atomically Dispersed Iron-Nitrogen Moiety as Enhanced Electrocatalysts for Oxygen Reduction Reaction in a Wide Range of pH},
author = {Fu, Shaofang and Zhu, Chengzhou and Su, Dong and Song, Junhua and Yao, Siyu and Feng, Shuo and Engelhard, Mark H. and Du, Dan and Lin, Yuehe},
abstractNote = {},
doi = {10.1002/smll.201703118},
journal = {Small},
number = ,
volume = ,
place = {Germany},
year = 2018,
month = 2
}

Journal Article:
Free Publicly Available Full Text
This content will become publicly available on February 12, 2019
Publisher's Accepted Manuscript

Save / Share:
  • Developing efficient and inexpensive catalysts for the sluggish oxygen reduction reaction (ORR) constitutes one of the grand challenges in the fabrication of commercially viable fuel cell devices and metal–air batteries for future energy applications. Despite recent achievements in designing advanced Pt-based and Pt-free catalysts, current progress primarily involves an empirical approach of trial-and-error combination of precursors and synthesis conditions, which limits further progress. Rational design of catalyst materials requires proper understanding of the mechanistic origin of the ORR and the underlying surface properties under operating conditions that govern catalytic activity. Herein, several different groups of iron-based catalysts synthesized via differentmore » methods and/or precursors were systematically studied by combining multiple spectroscopic techniques under ex situ and in situ conditions in an effort to obtain a comprehensive understanding of the synthesis-products correlations, nature of active sites, and the reaction mechanisms. These catalysts include original macrocycles, macrocycle-pyrolyzed catalysts, and Fe-N–C catalysts synthesized from individual Fe, N, and C precursors including polymer-based catalysts, metal organic framework (MOF)-based catalysts, and sacrificial support method (SSM)-based catalysts. The latter group of catalysts is most promising as not only they exhibit exceptional ORR activity and/or durability, but also the final products are controllable. We show that the high activity observed for most pyrolyzed Fe-based catalysts can mainly be attributed to a single active site: non-planar Fe–N 4 moiety embedded in distorted carbon matrix characterized by a high potential for the Fe 2+/3+ redox transition in acidic electrolyte/environment. The high intrinsic ORR activity, or turnover frequency (TOF), of this site is shown to be accounted for by redox catalysis mechanism that highlights the dominant role of the site-blocking effect. Moreover, a highly active MOF-based catalyst without Fe–N moieties was developed, and the active sites were identified as nitrogen-doped carbon fibers with embedded iron particles that are not directly involved in the oxygen reduction pathway. The high ORR activity and durability of catalysts involving this second site, as demonstrated in fuel cell, are attributed to the high density of active sites and the elimination or reduction of Fenton-type processes. The latter are initiated by hydrogen peroxide but are known to be accelerated by iron ions exposed to the surface, resulting in the formation of damaging free-radicals.« less
  • Cited by 29
  • The development of active, durable, and low-cost catalysts to replace noble metal-based materials is highly desirable to promote the sluggish oxygen reduction reaction in fuel cells. Herein, nitrogen and fluorine-codoped three-dimensional carbon nanowire aerogels, composed of interconnected carbon nanowires, were synthesized for the first time by a hydrothermal carbonization process. Owing to their porous nanostructures and heteroatom-doping, the as-prepared carbon nanowire aerogels, with optimized composition, present excellent electrocatalytic activity that is comparable to commercial Pt/C. Remarkably, the aerogels also exhibit superior stability and methanol tolerance. This synthesis procedure paves a new way to design novel heteroatomdoped catalysts.
  • The hierarchically porous nitrogen-doped carbon materials, derived from nitrogen-containing isoreticular metal-organic framework-3 (IRMOF-3) through direct carbonization, exhibited excellent electrocatalytic activity in alkaline solution for oxygen reduction reaction (ORR). This high activity is attributed to the 10 presence of high percentage of quaternary and pyridinic nitrogen, the high surface area as well as good conductivity. When IRMOF-3 was carbonized at 950 °C (CIRMOF-3-950), it showed four-electron reduction pathway for ORR and exhibited better stability (about 78.5% current density was maintained) than platinum/carbon (Pt/C) in the current durability test. In addition, CIRMOF-3-950 presented high selectivity to cathode reactions compared to commercial Pt/C.