skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Air-stable and freestanding lithium alloy/graphene foil as an alternative to lithium metal anodes

Abstract

Developing high-capacity anodes is a must to improve the energy density of lithium batteries for electric vehicle applications. Alloy anodes are one promising option, but without pre-stored lithium, the overall energy density is limited by the low-capacity lithium metal oxide cathodes. Recently, lithium metal has been revived as a high-capacity anode, but faces several challenges owing to its high reactivity and uncontrolled dendrite growth. Here, we show a series of Li-containing foils inheriting the desirable properties of alloy anodes and pure metal anodes. They consist of densely packed Li xM (M = Si, Sn, or Al) nanoparticles encapsulated by large graphene sheets. With the protection of graphene sheets, the large and freestanding Li xM/graphene foils are stable in different air conditions. With fully expanded Li xSi confined in the highly conductive and chemically stable graphene matrix, this LixSi/graphene foil maintains a stable structure and cyclability in half cells (400 cycles with 98% capacity retention). As a result, this foil is also paired with high-capacity Li-free V 2O 5 and sulfur cathodes to achieve stable full-cell cycling.

Authors:
 [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [2];  [3]
  1. Stanford Univ., Stanford, CA (United States)
  2. Chinese Academy of Sciences, Shenyang (People's Republic of China); Tsinghua Univ., Shenzhen (People's Republic of China)
  3. Stanford Univ., Stanford, CA (United States); SLAC National Accelerator Lab., Menlo Park, CA (United States)
Publication Date:
Research Org.:
SLAC National Accelerator Lab., Menlo Park, CA (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1419656
Grant/Contract Number:
AC02-76SF00515
Resource Type:
Journal Article: Accepted Manuscript
Journal Name:
Nature Nanotechnology
Additional Journal Information:
Journal Volume: 12; Journal Issue: 10; Journal ID: ISSN 1748-3387
Publisher:
Nature Publishing Group
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE

Citation Formats

Zhao, Jie, Zhou, Guangmin, Yan, Kai, Xie, Jin, Li, Yuzhang, Liao, Lei, Jin, Yang, Liu, Kai, Hsu, Po -Chun, Wang, Jiangyan, Cheng, Hui-Ming, and Cui, Yi. Air-stable and freestanding lithium alloy/graphene foil as an alternative to lithium metal anodes. United States: N. p., 2017. Web. doi:10.1038/nnano.2017.129.
Zhao, Jie, Zhou, Guangmin, Yan, Kai, Xie, Jin, Li, Yuzhang, Liao, Lei, Jin, Yang, Liu, Kai, Hsu, Po -Chun, Wang, Jiangyan, Cheng, Hui-Ming, & Cui, Yi. Air-stable and freestanding lithium alloy/graphene foil as an alternative to lithium metal anodes. United States. doi:10.1038/nnano.2017.129.
Zhao, Jie, Zhou, Guangmin, Yan, Kai, Xie, Jin, Li, Yuzhang, Liao, Lei, Jin, Yang, Liu, Kai, Hsu, Po -Chun, Wang, Jiangyan, Cheng, Hui-Ming, and Cui, Yi. Mon . "Air-stable and freestanding lithium alloy/graphene foil as an alternative to lithium metal anodes". United States. doi:10.1038/nnano.2017.129.
@article{osti_1419656,
title = {Air-stable and freestanding lithium alloy/graphene foil as an alternative to lithium metal anodes},
author = {Zhao, Jie and Zhou, Guangmin and Yan, Kai and Xie, Jin and Li, Yuzhang and Liao, Lei and Jin, Yang and Liu, Kai and Hsu, Po -Chun and Wang, Jiangyan and Cheng, Hui-Ming and Cui, Yi},
abstractNote = {Developing high-capacity anodes is a must to improve the energy density of lithium batteries for electric vehicle applications. Alloy anodes are one promising option, but without pre-stored lithium, the overall energy density is limited by the low-capacity lithium metal oxide cathodes. Recently, lithium metal has been revived as a high-capacity anode, but faces several challenges owing to its high reactivity and uncontrolled dendrite growth. Here, we show a series of Li-containing foils inheriting the desirable properties of alloy anodes and pure metal anodes. They consist of densely packed LixM (M = Si, Sn, or Al) nanoparticles encapsulated by large graphene sheets. With the protection of graphene sheets, the large and freestanding LixM/graphene foils are stable in different air conditions. With fully expanded LixSi confined in the highly conductive and chemically stable graphene matrix, this LixSi/graphene foil maintains a stable structure and cyclability in half cells (400 cycles with 98% capacity retention). As a result, this foil is also paired with high-capacity Li-free V2O5 and sulfur cathodes to achieve stable full-cell cycling.},
doi = {10.1038/nnano.2017.129},
journal = {Nature Nanotechnology},
number = 10,
volume = 12,
place = {United States},
year = {Mon Jul 10 00:00:00 EDT 2017},
month = {Mon Jul 10 00:00:00 EDT 2017}
}

Journal Article:
Free Publicly Available Full Text
This content will become publicly available on July 10, 2018
Publisher's Version of Record

Citation Metrics:
Cited by: 8works
Citation information provided by
Web of Science

Save / Share:
  • Lithium metal is a promising anode candidate for the next-generation rechargeable battery due to its highest specific capacity (3860 mA h g -1) and lowest potential, but low Coulombic efficiency and formation of lithium dendrites hinder its practical application. Here, we report a self-formed flexible hybrid solid-electrolyte interphase layer through co-deposition of organosulfides/organopolysulfides and inorganic lithium salts using sulfur-containing polymers as an additive in the electrolyte. The organosulfides/organopolysulfides serve as “plasticizer” in the solid-electrolyte interphase layer to improve its mechanical flexibility and toughness. The as-formed robust solid-electrolyte interphase layers enable dendrite-free lithium deposition and significantly improve Coulombic efficiency (99% overmore » 400 cycles at a current density of 2mAcm -2). A lithium-sulfur battery based on this strategy exhibits long cycling life (1000 cycles) and good capacity retention. This study reveals an avenue to effectively fabricate stable solid-electrolyte interphase layer for solving the issues associated with lithium metal anodes.« less
  • Lithium metal is a promising anode candidate for the next-generation rechargeable battery due to its highest specific capacity (3860 mA h g-1) and lowest potential, but low Coulombic efficiency and formation of lithium dendrites hinder its practical application. Here, we report a self-formed flexible hybrid solid-electrolyte interphase layer through co-deposition of organosulfides/organopolysulfides and inorganic lithium salts using sulfur-containing polymers as an additive in the electrolyte. The organosulfides/organopolysulfides serve as “plasticizer” in the solid-electrolyte interphase layer to improve its mechanical flexibility and toughness. The as-formed robust solid-electrolyte interphase layers enable dendrite-free lithium deposition and significantly improve Coulombic efficiency (99% over 400more » cycles at a current density of 2mAcm-2). A lithium-sulfur battery based on this strategy exhibits long cycling life (1000 cycles) and good capacity retention. This study reveals an avenue to effectively fabricate stable solid-electrolyte interphase layer for solving the issues associated with lithium metal anodes.« less
  • To spread lithium ion batteries into large-scale energy storage technologies, high ener-gy/power densities and long cycling life of carbon-based anodes must be achieved. This re-quires revolutionary design of the anode’s architectures that can facilitate the fast electronic and ionic transport, as well as accommodate the electrode structural instability. Here we re-port a thin-film electrode design and demonstrate its use in flexible, and large-area carbon-based anode assemblies. The fabrication of electrodes is realized by sputtering a graphite tar-get in the high-purity nitrogen atmosphere, then highly-defect nitrogen-doped carbon nano-fibers are deposited vertically onto copper substrates with a thin film configuration. The high-ly-defectmore » nitrogen-doping enhances the lithium storage and transport, the orientation grown mechanism improves the charge transfer, and the compact configuration makes the high tap density possible. As a result, the thin films exhibit high specific capacities of ~ 500 mAh g-1, namely a volume capacity of ~ 100 mAh cm-3. They also exhibit stable cycle performance (400 mAh g-1 after 200 cycles) and good rate capability (450 mAh g-1 at 1 A g-1 rate). This work opens up a new carbon-based anode design by using sputtering technology for effec-tively incorporating high content nitrogen into carbon matrices. Such electrode architecture significantly improves the electrochemical performance of carbon-based materials.« less
  • Here, structural degradation and low conductivity of transition-metal oxides lead to severe capacity fading in lithium-ion batteries. Recent efforts to solve this issue have mainly focused on using nanocomposites or hybrids by integrating nanosized metal oxides with conducting additives. Here we design specific hierarchical structures and demonstrate their use in flexible, large-area anode assemblies. Fabrication of these anodes is achieved via oxidative growth of copper oxide nanowires onto copper substrates followed by radio-frequency sputtering of carbon-nitride films, forming freestanding three-dimensional arrays with core–shell nano-architecture. Cable-like copper oxide/carbon-nitride core–shell nanostructures accommodate the volume change during lithiation-delithiation processes, the three-dimensional arrays providemore » abundant electroactive zones and electron/ion transport paths, and the monolithic sandwich-type configuration without additional binders or conductive agents improves energy/power densities of the whole electrode.« less