The Pandora multi-algorithm approach to automated pattern recognition of cosmic-ray muon and neutrino events in the MicroBooNE detector
Journal Article
·
· European Physical Journal. C, Particles and Fields
The development and operation of Liquid-Argon Time-Projection Chambers for neutrino physics has created a need for new approaches to pattern recognition in order to fully exploit the imaging capabilities offered by this technology. Whereas the human brain can excel at identifying features in the recorded events, it is a significant challenge to develop an automated, algorithmic solution. The Pandora Software Development Kit provides functionality to aid the design and implementation of pattern-recognition algorithms. It promotes the use of a multi-algorithm approach to pattern recognition, in which individual algorithms each address a specific task in a particular topology. Many tens of algorithms then carefully build up a picture of the event and, together, provide a robust automated pattern-recognition solution. This paper describes details of the chain of over one hundred Pandora algorithms and tools used to reconstruct cosmic-ray muon and neutrino events in the MicroBooNE detector. Metrics that assess the current pattern-recognition performance are presented for simulated MicroBooNE events, using a selection of final-state event topologies.
- Research Organization:
- Brookhaven National Laboratory (BNL), Upton, NY (United States); Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States); Los Alamos National Laboratory (LANL), Los Alamos, NM (United States); Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)
- Sponsoring Organization:
- USDOE Office of Science (SC), High Energy Physics (HEP) (SC-25); USDOE Office of Science (SC), Nuclear Physics (NP) (SC-26)
- Contributing Organization:
- MicroBooNE; MicroBooNE Collaboration
- Grant/Contract Number:
- AC02-07CH11359; SC0012704
- OSTI ID:
- 1418407
- Alternate ID(s):
- OSTI ID: 1424970
OSTI ID: 22682906
OSTI ID: 1398805
- Report Number(s):
- AIDA-2020-PUB-2017-002; BNL-203308-2018-JAAM; FERMILAB-PUB-17-306-ND; arXiv:1708.03135; 82; PII: 5481
- Journal Information:
- European Physical Journal. C, Particles and Fields, Journal Name: European Physical Journal. C, Particles and Fields Journal Issue: 1 Vol. 78; ISSN 1434-6044
- Publisher:
- SpringerCopyright Statement
- Country of Publication:
- Germany
- Language:
- English
Particle flow calorimetry and the PandoraPFA algorithm
|
journal | November 2009 |
The GENIE neutrino Monte Carlo generator
|
journal | February 2010 |
Performance of particle flow calorimetry at CLIC
|
journal | February 2013 |
The Pandora software development kit for pattern recognition
|
journal | September 2015 |
Precise 3D Track Reconstruction Algorithm for the ICARUS T600 Liquid Argon Time Projection Chamber Detector
|
journal | January 2013 |
Similar Records
The Pandora multi-algorithm approach to automated pattern recognition in LAr TPC detectors
Technical Report
·
Fri Jul 01 00:00:00 EDT 2016
·
OSTI ID:1573048