skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Nanometer-scale characterization of laser-driven compression, shocks, and phase transitions, by x-ray scattering using free electron lasers

Abstract

In this paper, we study the feasibility of using small angle X-ray scattering (SAXS) as a new experimental diagnostic for intense laser-solid interactions. By using X-ray pulses from a hard X-ray free electron laser, we can simultaneously achieve nanometer and femtosecond resolution of laser-driven samples. This is an important new capability for the Helmholtz international beamline for extreme fields at the high energy density endstation currently built at the European X-ray free electron laser. We review the relevant SAXS theory and its application to transient processes in solid density plasmas and report on first experimental results that confirm the feasibility of the method. Finally, we present results of two test experiments where the first experiment employs ultra-short laser pulses for studying relativistic laser plasma interactions, and the second one focuses on shock compression studies with a nanosecond laser system.

Authors:
ORCiD logo [1];  [2];  [3];  [1]; ORCiD logo [4];  [4];  [5]; ORCiD logo [5];  [6]; ORCiD logo [1];  [4];  [4];  [1]; ORCiD logo [3];  [4];  [4];  [7];  [4];  [4];  [4] more »;  [4]; ORCiD logo [3]; ORCiD logo [3]; ORCiD logo [3] « less
  1. Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden (Germany)
  2. Friedrich Schiller Univ., Jena (Germany). Faculty of Physics and Astronomy; SLAC National Accelerator Lab., Menlo Park, CA (United States)
  3. Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden (Germany); TU Dresden (Germany). Faculty of Physics
  4. SLAC National Accelerator Lab., Menlo Park, CA (United States)
  5. Pierre and Marie Curie Univ., Paris (France). Inst. of Mineralogy and Physics of Condensed Environments (IMPMC)
  6. Univ. of York (United Kingdom). Dept. of Physics
  7. Univ. of Siegen (Germany). Dept. of Physics
Publication Date:
Research Org.:
SLAC National Accelerator Lab., Menlo Park, CA (United States); Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden (Germany)
Sponsoring Org.:
USDOE Office of Science (SC), Fusion Energy Sciences (FES) (SC-24); Helmholtz International Beamline for Extreme Fields (HIBEF); German Federal Ministry of Education and Research (BMBF); European Union (EU)
OSTI Identifier:
1417591
Grant/Contract Number:
AC02-76SF00515; 03Z1O511; 654220
Resource Type:
Journal Article: Accepted Manuscript
Journal Name:
Physics of Plasmas
Additional Journal Information:
Journal Volume: 24; Journal Issue: 10; Journal ID: ISSN 1070-664X
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
70 PLASMA PHYSICS AND FUSION TECHNOLOGY; laser plasma interactions; X-ray scattering; free; phase transitions; X-ray diffraction

Citation Formats

Kluge, T., Rödel, C., Rödel, M., Pelka, A., McBride, E. E., Fletcher, L. B., Harmand, M., Krygier, A., Higginbotham, A., Bussmann, M., Galtier, E., Gamboa, E., Garcia, A. L., Garten, M., Glenzer, S. H., Granados, E., Gutt, C., Lee, H. J., Nagler, B., Schumaker, W., Tavella, F., Zacharias, M., Schramm, U., and Cowan, T. E. Nanometer-scale characterization of laser-driven compression, shocks, and phase transitions, by x-ray scattering using free electron lasers. United States: N. p., 2017. Web. doi:10.1063/1.5008289.
Kluge, T., Rödel, C., Rödel, M., Pelka, A., McBride, E. E., Fletcher, L. B., Harmand, M., Krygier, A., Higginbotham, A., Bussmann, M., Galtier, E., Gamboa, E., Garcia, A. L., Garten, M., Glenzer, S. H., Granados, E., Gutt, C., Lee, H. J., Nagler, B., Schumaker, W., Tavella, F., Zacharias, M., Schramm, U., & Cowan, T. E. Nanometer-scale characterization of laser-driven compression, shocks, and phase transitions, by x-ray scattering using free electron lasers. United States. doi:10.1063/1.5008289.
Kluge, T., Rödel, C., Rödel, M., Pelka, A., McBride, E. E., Fletcher, L. B., Harmand, M., Krygier, A., Higginbotham, A., Bussmann, M., Galtier, E., Gamboa, E., Garcia, A. L., Garten, M., Glenzer, S. H., Granados, E., Gutt, C., Lee, H. J., Nagler, B., Schumaker, W., Tavella, F., Zacharias, M., Schramm, U., and Cowan, T. E. 2017. "Nanometer-scale characterization of laser-driven compression, shocks, and phase transitions, by x-ray scattering using free electron lasers". United States. doi:10.1063/1.5008289.
@article{osti_1417591,
title = {Nanometer-scale characterization of laser-driven compression, shocks, and phase transitions, by x-ray scattering using free electron lasers},
author = {Kluge, T. and Rödel, C. and Rödel, M. and Pelka, A. and McBride, E. E. and Fletcher, L. B. and Harmand, M. and Krygier, A. and Higginbotham, A. and Bussmann, M. and Galtier, E. and Gamboa, E. and Garcia, A. L. and Garten, M. and Glenzer, S. H. and Granados, E. and Gutt, C. and Lee, H. J. and Nagler, B. and Schumaker, W. and Tavella, F. and Zacharias, M. and Schramm, U. and Cowan, T. E.},
abstractNote = {In this paper, we study the feasibility of using small angle X-ray scattering (SAXS) as a new experimental diagnostic for intense laser-solid interactions. By using X-ray pulses from a hard X-ray free electron laser, we can simultaneously achieve nanometer and femtosecond resolution of laser-driven samples. This is an important new capability for the Helmholtz international beamline for extreme fields at the high energy density endstation currently built at the European X-ray free electron laser. We review the relevant SAXS theory and its application to transient processes in solid density plasmas and report on first experimental results that confirm the feasibility of the method. Finally, we present results of two test experiments where the first experiment employs ultra-short laser pulses for studying relativistic laser plasma interactions, and the second one focuses on shock compression studies with a nanosecond laser system.},
doi = {10.1063/1.5008289},
journal = {Physics of Plasmas},
number = 10,
volume = 24,
place = {United States},
year = 2017,
month =
}

Journal Article:
Free Publicly Available Full Text
This content will become publicly available on October 23, 2018
Publisher's Version of Record

Save / Share:
  • Using an X-ray free electron laser (XFEL) at 960 eV to photo-ionize the 1s electron in neutral neon followed by lasing on the 2p-1s transition in singly-ionized neon, an inner-shell X-ray laser was demonstrated at 849 eV in singly-ionized neon gas several years ago. It took decades to demonstrate this scheme, because it required a very strong X-ray source that could photo-ionize the 1s (K shell) electron in neon on a timescale comparable to the intrinsic Auger lifetime in neon of 2 fs. In this paper, we model the neon inner shell X-ray laser under similar conditions to those usedmore » in the XFEL experiments at the SLAC Linac Coherent Light Source (LCLS), and show how we can improve the efficiency of the neon laser and reduce the drive requirements by tuning the XFEL to the 1s-3p transition in neutral neon in order to create gain on the 2p-1s line in neutral neon. We also show how the XFEL could be used to photo-ionize L-shell electrons to drive gain on n = 3–2 transitions in singly-ionized Ar and Cu plasmas. Furthermore, these bright, coherent, and monochromatic X-ray lasers may prove very useful for doing high-resolution spectroscopy and for studying non-linear process in the X-ray regime.« less
  • Using an X-ray free electron laser (XFEL) at 960 eV to photo-ionize the 1s electron in neutral neon followed by lasing on the 2p-1s transition in singly-ionized neon, an inner-shell X-ray laser was demonstrated at 849 eV in singly-ionized neon gas several years ago. It took decades to demonstrate this scheme, because it required a very strong X-ray source that could photo-ionize the 1s (K shell) electron in neon on a timescale comparable to the intrinsic Auger lifetime in neon of 2 fs. In this paper, we model the neon inner shell X-ray laser under similar conditions to those usedmore » in the XFEL experiments at the SLAC Linac Coherent Light Source (LCLS), and show how we can improve the efficiency of the neon laser and reduce the drive requirements by tuning the XFEL to the 1s-3p transition in neutral neon in order to create gain on the 2p-1s line in neutral neon. We also show how the XFEL could be used to photo-ionize L-shell electrons to drive gain on n = 3–2 transitions in singly-ionized Ar and Cu plasmas. Furthermore, these bright, coherent, and monochromatic X-ray lasers may prove very useful for doing high-resolution spectroscopy and for studying non-linear process in the X-ray regime.« less
  • The concept of a THz-based IFEL compressor at the UCLA Pegasus photoinjector laboratory is explored. A 3.5 MeV sub-picosecond electron beam generated in the photoinjector blowout regime can be compressed to femtosecond timescales by a THz IFEL interaction.
  • Femtosecond pulses from soft-x-ray free-electron lasers (FELs) [1] are ideal for directly probing matter at atomic length scales and timescales of atomic motion. An important component of understanding ultrafast phenomena of light-matter interactions is concerned with the onset of atomic motion which is impeded by the atoms inertia. This delay of structural changes will enable atomic-resolution flash-imaging [2-3] to be performed at upcoming x-ray FELs [4-5] with pulses intense enough to record the x-ray scattering from single molecules [6]. We explored this ultrafast high-intensity regime with the FLASH soft-x-ray FEL [7-8] by measuring the reflectance of nanostructured multilayer mirrors usingmore » pulses with fluences far in excess of the mirrors damage threshold. Even though the nanostructures were ultimately completely destroyed, we found that they maintained their integrity and reflectance characteristics during the 25-fs-long pulse, with no evidence for any structural changes during that time over lengths greater than 3 {angstrom}. In the recently built FLASH FEL [7], x-rays are produced from short electron pulses oscillating in a periodic magnet array, called an undulator, by the principle of self-amplification of spontaneous emission [9-10]. The laser quality of the x-ray pulses can be quantified by the peak spectral brilliance of the source, which is 10{sup 28} photons/(s mm2 mrad2 0.1% bandwidth) [8]; this is up to seven orders of magnitude higher than modern third-generation synchrotron sources. For our studies, the machine operated with pulses of 25 fs duration at a wavelength of 32.5 nm and energies up to 21 {micro}J. We focused these pulses to 3 x 10{sup 14} W/cm{sup 2} onto our nanostructured samples, resulting in an the unprecedented heating rate of 5 x 10{sup 18} K/s, while probing the irradiated structures at the nanometer length scale. The x-ray reflectivity of periodic nanometer-scale multilayers [11] is very sensitive to changes in the atomic positions and the refractive indices of the constituent materials, making them an ideal choice to study structural changes induced by ultrashort FEL pulses. The large multilayer reflectivity results from the cooperative interaction of the x-ray field with many layers of precisely fabricated thicknesses, each less than the x-ray wavelength. This Bragg or resonant reflection from the periodic structure is easily disrupted by any imperfection of the layers. The characteristics of the structure, such as periodicity or layer intermixing, can be precisely determined from the measurement of the Bragg reflectivity as a function of incidence angle. These parameters can be easily measured to a small fraction of the probe wavelength, as is well known in x-ray crystallography where average atomic positions of minerals or proteins are found to less than 0.01{angstrom}. Thus, we can explore ultrafast phenomena at length scales less than the wavelength, and investigate the conditions to overcome the effects of radiation damage by using ultrafast pulses.« less