Hydration kinetics and morphology of cement pastes with pozzolanic volcanic ash studied via synchrotron-based techniques
Journal Article
·
· Journal of Materials Science
- Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States). Laboratory for Infrastructure Science and Sustainability (LISS), Department of Civil and Environmental Engineering
- Argonne National Lab. (ANL), Argonne, IL (United States). X-ray Science Division, Advanced Photon Source
- Kuwait University, Safat (Kuwait). Chemistry Dept.
Here, this study investigates the early ages of hydration behavior when basaltic volcanic ash was used as a partial substitute to ordinary Portland cement using ultra-small-angle X-ray scattering and wide-angle X-ray scattering (WAXS). The mix design consisted of 10, 30 and 50% substitution of Portland cement with two different-sized volcanic ashes. The data showed that substitution of volcanic ash above 30% results in excess unreacted volcanic ash, rather than additional pozzolanic reactions along longer length scales. WAXS studies revealed that addition of finely ground volcanic ash facilitated calcium-silicate-hydrate related phases, whereas inclusion of coarser volcanic ash caused domination by calcium-aluminum-silicate-hydrate and unreacted MgO phases, suggesting some volcanic ash remained unreacted throughout the hydration process. Addition of more than 30% volcanic ash leads to coarser morphology along with decreased surface area and higher intensity of scattering at early-age hydration. This suggests an abrupt dissolution indicated by changes in surface area due to the retarding gel formation that can have implication on early-age setting influencing the mechanical properties of the resulting cementitious matrix. The findings from this work show that the concentration of volcanic ash influences the specific surface area and morphology of hydration products during the early age of hydration. Therefore, natural pozzolanic volcanic ashes can be a viable substitute to Portland cement by providing environmental benefits in terms of lower-carbon footprint along with long-term durability.
- Research Organization:
- Argonne National Laboratory (ANL), Argonne, IL (United States)
- Sponsoring Organization:
- Kuwait Institute for Scientific Research; USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22). Scientific User Facilities Division
- Grant/Contract Number:
- AC02-06CH11357
- OSTI ID:
- 1415939
- Alternate ID(s):
- OSTI ID: 22754954
- Journal Information:
- Journal of Materials Science, Journal Name: Journal of Materials Science Journal Issue: 3 Vol. 53; ISSN 0022-2461
- Publisher:
- SpringerCopyright Statement
- Country of Publication:
- United States
- Language:
- English
New insights into water dynamics of Portland cement paste with nano-additives using quasielastic neutron scattering
|
journal | December 2018 |
Removal of heavy metals (Co, Cr, and Zn) during calcium–aluminium–silicate–hydrate and trioctahedral smectite formation
|
journal | March 2019 |
Similar Records
Water dynamics in cement paste at early age prepared with pozzolanic volcanic ash and Ordinary Portland Cement using quasielastic neutron scattering
Use of silica fume and natural volcanic ash as a replacement to Portland cement: Micro and pore structural investigation using NMR, XRD, FTIR and X-ray microtomography
Pozzolanic properties of a geothermal silica waste material
Journal Article
·
Mon Aug 15 00:00:00 EDT 2016
· Cement and Concrete Research
·
OSTI ID:22696569
Use of silica fume and natural volcanic ash as a replacement to Portland cement: Micro and pore structural investigation using NMR, XRD, FTIR and X-ray microtomography
Journal Article
·
Sun Dec 31 23:00:00 EST 2017
· Construction and Building Materials
·
OSTI ID:1466319
Pozzolanic properties of a geothermal silica waste material
Journal Article
·
Wed Mar 31 23:00:00 EST 1999
· Cement and Concrete Research
·
OSTI ID:351611