skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Electrolyte chemistry control in electrodialysis processing

Abstract

Methods for controlling electrolyte chemistry in electrodialysis units having an anode and a cathode each in an electrolyte of a selected concentration and a membrane stack disposed therebetween. The membrane stack includes pairs of cationic selective and anionic membranes to segregate increasingly dilute salts streams from concentrated salts stream. Electrolyte chemistry control is via use of at least one of following techniques: a single calcium exclusionary cationic selective membrane at a cathode cell boundary, an exclusionary membrane configured as a hydraulically isolated scavenger cell, a multivalent scavenger co-electrolyte and combinations thereof.

Inventors:
;
Publication Date:
Research Org.:
National Energy Technology Lab. (NETL), Pittsburgh, PA, and Morgantown, WV (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1415031
Patent Number(s):
9,849,426
Application Number:
14/616,262
Assignee:
Gas Technology Institute (Des Plaines, IL) NETL
DOE Contract Number:
AC26-07NT42677
Resource Type:
Patent
Resource Relation:
Patent File Date: 2015 Feb 06
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY

Citation Formats

Hayes, Thomas D., and Severin, Blaine F.. Electrolyte chemistry control in electrodialysis processing. United States: N. p., 2017. Web.
Hayes, Thomas D., & Severin, Blaine F.. Electrolyte chemistry control in electrodialysis processing. United States.
Hayes, Thomas D., and Severin, Blaine F.. Tue . "Electrolyte chemistry control in electrodialysis processing". United States. doi:. https://www.osti.gov/servlets/purl/1415031.
@article{osti_1415031,
title = {Electrolyte chemistry control in electrodialysis processing},
author = {Hayes, Thomas D. and Severin, Blaine F.},
abstractNote = {Methods for controlling electrolyte chemistry in electrodialysis units having an anode and a cathode each in an electrolyte of a selected concentration and a membrane stack disposed therebetween. The membrane stack includes pairs of cationic selective and anionic membranes to segregate increasingly dilute salts streams from concentrated salts stream. Electrolyte chemistry control is via use of at least one of following techniques: a single calcium exclusionary cationic selective membrane at a cathode cell boundary, an exclusionary membrane configured as a hydraulically isolated scavenger cell, a multivalent scavenger co-electrolyte and combinations thereof.},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Tue Dec 26 00:00:00 EST 2017},
month = {Tue Dec 26 00:00:00 EST 2017}
}

Patent:

Save / Share:
  • The present invention relates generally to electrolyte materials. According to an embodiment, the present invention provides for a solid polymer electrolyte material that is ionically conductive, mechanically robust, and can be formed into desirable shapes using conventional polymer processing methods. An exemplary polymer electrolyte material has an elastic modulus in excess of 1.times.10.sup.6 Pa at 90 degrees C. and is characterized by an ionic conductivity of at least 1.times.10.sup.-5 Scm-1 at 90 degrees C. An exemplary material can be characterized by a two domain or three domain material system. An exemplary material can include material components made of diblock polymersmore » or triblock polymers. Many uses are contemplated for the solid polymer electrolyte materials. For example, the present invention can be applied to improve Li-based batteries by means of enabling higher energy density, better thermal and environmental stability, lower rates of self-discharge, enhanced safety, lower manufacturing costs, and novel form factors.« less
  • An electrolytic cell stack includes inactive electrolyte reservoirs at the upper and lower end portions thereof. The reservoirs are separated from the stack of the complete cells by impermeable, electrically conductive separators. Reservoirs at the negative end are initially low in electrolyte and the reservoirs at the positive end are high in electrolyte fill. During stack operation electrolyte migration from the positive to the negative end will be offset by the inactive reservoir capacity. In combination with the inactive reservoirs, a sealing member of high porosity and low electrolyte retention is employed to limit the electrolyte migration rate. 5 figs.
  • A fuel cell stack which can be operated with cells in a horizontal position so that the fuel cell stack does not have to be taken out of operation when adding an electrolyte such as an acid. Acid is supplied to each matrix in a stack of fuel cells at a uniform, low pressure so that the matrix can either be filled initially or replenished with acid lost in operation of the cell, without exceeding the bubble pressure of the matrix or the flooding pressure of the electrodes on either side of the matrix. Acid control to each cell ismore » achieved by restricting and offsetting the opening of electrolyte fill holes in the matrix relative to openings in the plates which sandwich the matrix and electrodes therebetween.« less
  • An electrolytic cell stack includes inactive electrolyte reservoirs at the upper and lower end portions thereof. The reservoirs are separated from the stack of the complete cells by impermeable, electrically conductive separators. Reservoirs at the negative end are initially low in electrolyte and the reservoirs at the positive end are high in electrolyte fill. During stack operation electrolyte migration from the positive to the negative end will be offset by the inactive reservoir capacity. In combination with the inactive reservoirs, a sealing member of high porosity and low electrolyte retention is employed to limit the electrolyte migration rate.