skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Mechanical Analysis of an SM 2 Blk IV restrained firing within a concentric canister launcher test unit

Technical Report ·
DOI:https://doi.org/10.2172/14146· OSTI ID:14146

The Office of Naval Research (ONR) and PMS512 have undertaken a program to develop a new Vertical Launching System (VLS) for future generation ships, such as the DD-21 Destroyer. The Naval Sea Systems Command Combat Weapons Program (NAVSEA 05K) and Naval Surface Warfare Center Dahlgren Division (NSWCDD) are working jointly with industry and universities to develop one such launcher design, the Concentric Canister Launcher (CCL). The basic CCL design consists of a tube made of two concentric cylinders; one end is open, the other is sealed with a hemispherical end cap. During firing, the missile exhaust gas is turned 180 degrees by the hemispherical end cap and flows through the annular space between inner and outer cylinders. Depending on the missile utilized and the particular service environment of the CCL, maximum temperatures within the cylinder material have been calculated to exceed 2000 F. In an earlier study [1], the authors determined the high temperature mechanical properties of several candidate alloys being considered for fabrication of the CCL. This study [1] found that, of these candidate materials, titanium alloys exhibit higher yield stresses than that of 316L stainless steel at temperatures up to about 1000 F; above 1500 F, the yield stress of 316L stainless steel is comparable to those of the titanium alloys. The 316L stainless steel was found to strain harden (increase its flow stress with increasing strain) at temperatures up to about 1800 F. The ability of the 316L stainless steel to strain harden at high temperatures may provide an added margin of safety for engineering design of the CCL. The objective of the current study was to perform a computer simulation of the structural response of a CCL during a restrained firing, one in which a SM-2 Blk IV missile would fail to exit the canister. A finite element model of the inner cylinder, outer cylinder, end rings (mounting brackets), and lateral restraints in the uptake was constructed. An elastic-plastic, quasi-static analysis was performed using temperature dependent material properties of 316L stainless steel. Modeling details are described in the CCL Structure section of this report.

Research Organization:
Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)
Sponsoring Organization:
USDOE Office of Defense Programs (DP) (US)
DOE Contract Number:
W-7405-ENG-48
OSTI ID:
14146
Report Number(s):
UCRL-ID-132827; EW7040000; EW7040000; TRN: AH200136%%396
Resource Relation:
Other Information: PBD: 1 Mar 1999
Country of Publication:
United States
Language:
English