skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Review of the impacts of leaking CO 2 gas and brine on groundwater quality

; ; ; ; ;
Publication Date:
Sponsoring Org.:
OSTI Identifier:
Grant/Contract Number:
Resource Type:
Journal Article: Publisher's Accepted Manuscript
Journal Name:
Earth-Science Reviews
Additional Journal Information:
Journal Volume: 169; Journal Issue: C; Related Information: CHORUS Timestamp: 2017-12-14 04:48:44; Journal ID: ISSN 0012-8252
Country of Publication:

Citation Formats

Qafoku, Nikolla P., Lawter, Amanda R., Bacon, Diana H., Zheng, Liange, Kyle, Jennifer, and Brown, Christopher F. Review of the impacts of leaking CO 2 gas and brine on groundwater quality. Netherlands: N. p., 2017. Web. doi:10.1016/j.earscirev.2017.04.010.
Qafoku, Nikolla P., Lawter, Amanda R., Bacon, Diana H., Zheng, Liange, Kyle, Jennifer, & Brown, Christopher F. Review of the impacts of leaking CO 2 gas and brine on groundwater quality. Netherlands. doi:10.1016/j.earscirev.2017.04.010.
Qafoku, Nikolla P., Lawter, Amanda R., Bacon, Diana H., Zheng, Liange, Kyle, Jennifer, and Brown, Christopher F. 2017. "Review of the impacts of leaking CO 2 gas and brine on groundwater quality". Netherlands. doi:10.1016/j.earscirev.2017.04.010.
title = {Review of the impacts of leaking CO 2 gas and brine on groundwater quality},
author = {Qafoku, Nikolla P. and Lawter, Amanda R. and Bacon, Diana H. and Zheng, Liange and Kyle, Jennifer and Brown, Christopher F.},
abstractNote = {},
doi = {10.1016/j.earscirev.2017.04.010},
journal = {Earth-Science Reviews},
number = C,
volume = 169,
place = {Netherlands},
year = 2017,
month = 6

Journal Article:
Free Publicly Available Full Text
This content will become publicly available on May 3, 2018
Publisher's Accepted Manuscript

Save / Share:
  • This review paper provides a synthetic view of the existing knowledge and summarizes data and findings of the recent literature on the subject of the potential leaking of CO2 from the deep subsurface storage reservoirs and the effects on aquifer quality. New ideas and concepts are developed and insights are also provided. The objectives of this paper are to: 1) present and discuss potential risks for groundwater degradation due to CO2 gas and brine exposure; 2) identify the set of geochemical data required to assess and predict aquifer responses to CO2 and brine leakage. Specifically, this paper will discuss themore » following issues: 1) Aquifer responses (such as changes in aqueous phase/groundwater chemical composition; changes in solid phase chemistry and mineralogy; changes in the extent and rate of reactions and processes and possible establishment of a new network of reactions and processes affecting or controlling overall mobility of major, minor, and trace elements; development of conceptual and reduced order models (ROMs) to describe and predict aquifer responses); 2) The degree of impact such as significant or insignificant changes in pH and major, minor, and trace element release that depend on the following controlling variables; the effect of leaking plume characteristics (gas composition, pure CO2 and/or CO2 -CH4 -H2S mixtures and brine concentration and composition (trace metals); aquifer properties [such as initial aqueous phase conditions and mineralogy: minerals controlling sediments’ response (e.g., calcite, Si bearing minerals, etc.)]; overview of relevant hydrogeological and geochemical processes related to the impact of CO2 gas and brine on groundwater quality; the fate of the elements released from sediments or transported with brine (such as precipitation/incorporation into minerals (calcite and other minerals), adsorption, electron transfer reactions, the role of natural attenuation; whether or not the release of metals following exposure to CO2 harmful (risk assessment).« less
  • Geological carbon sequestration (GCS) is a global carbon emission reduction strategy involving the capture of CO 2 emitted from fossil fuel burning power plants, as well as the subsequent injection of the captured CO 2 gas into deep saline aquifers or depleted oil and gas reservoirs. A critical question that arises from the proposed GCS is the potential impacts of CO 2 injection on the quality of drinking-water systems overlying CO 2 sequestration storage sites. Although storage reservoirs are evaluated and selected based on their ability to safely and securely store emplaced fluids, leakage of CO 2 from storage reservoirsmore » is a primary risk factor and potential barrier to the widespread acceptance of geologic CO 2 sequestration (OR Harvey et al. 2013; Y-S Jun et al. 2013; DOE 2007). Therefore, a systematic understanding of how CO 2 leakage would affect the geochemistry of potable aquifers, and subsequently control or affect elemental and contaminant release via sequential and/or simultaneous abiotic and biotic processes and reactions is vital.« less
  • The leakage of CO2 and the concomitant saline solutions from deep storage reservoirs to overlying groundwater aquifers is considered one of the major potential risks associated with geologic CO2 sequestration (GCS). Batch and column experiments were conducted to determine the fate of trace metals in groundwater in the scenarios of CO2 and metal contaminated brine leakage. The sediments used in this work were collected from an unconsolidated sand and gravel aquifer in Kansas, and contained 0-4 wt% carbonates. Cd and As were spiked into the reaction system to represent potential contaminants from the reservoir brine that could intrude into groundwatermore » aquifers with leaking CO2 at initial concentrations of 114 and 40 ppb, respectively. Through this research we demonstrated that Cd and As were adsorbed on the sediments, in spite of the lowered pH due to CO2 dissolution in the groundwater. Cd concentrations were well below its MCL in both batch and column studies, even for sediment samples without detectable carbonate to buffer the pH. Arsenic concentrations in the effluent were also significantly lower than influent concentration, suggesting that the sediments tested have the capacity to mitigate the coupled adverse effects of CO2 leakage and brine intrusion. However, the mitigation capacity of sediment is a function of its geochemical properties [e.g., the calcite content; the presence of adsorbed As(III); and the presence of P in the natural sediment]. The competitive adsorption between phosphate and arsenate may result in higher concentrations of As in the aqueous phase.« less
  • A careful assessment of the risk associated with geologic CO₂ storage is critical to the deployment of large-scale storage projects. A potential risk is the deterioration of groundwater quality caused by the leakage of CO₂ and brine leakage from deep subsurface reservoirs. In probabilistic risk assessment studies, numerical modeling is the primary tool employed to assess risk. However, the application of traditional numerical models to fully evaluate the impact of CO₂ leakage on groundwater can be computationally complex, demanding large processing times and resources, and involving large uncertainties. As an alternative, reduced order models (ROMs) can be used as highlymore » efficient surrogates for the complex process-based numerical models. In this study, we represent the complex hydrogeological and geochemical conditions in a heterogeneous aquifer and subsequent risk by developing and using two separate ROMs. The first ROM is derived from a model that accounts for the heterogeneous flow and transport conditions in the presence of complex leakage functions for CO₂ and brine. The second ROM is obtained from models that feature similar, but simplified flow and transport conditions, and allow for a more complex representation of all relevant geochemical reactions. To quantify possible impacts to groundwater aquifers, the basic risk metric is taken as the aquifer volume in which the water quality of the aquifer may be affected by an underlying CO₂ storage project. The integration of the two ROMs provides an estimate of the impacted aquifer volume taking into account uncertainties in flow, transport and chemical conditions. These two ROMs can be linked in a comprehensive system level model for quantitative risk assessment of the deep storage reservoir, wellbore leakage, and shallow aquifer impacts to assess the collective risk of CO₂ storage projects.« less
  • Long-term storage of CO₂ in underground reservoirs requires a careful assessment to evaluate risk to groundwater sources. The focus of this study is to assess time-frames required to restore water quality to pre-injection levels based on output from complex reactive transport simulations that exhibit plume retraction within a 200-year simulation period. We examined the relationship between plume volume, cumulative injected CO₂ mass, and permeability. The role of mitigation was assessed by projecting falloffs in plume volumes from their maximum peak levels with a Gaussian function to estimate plume recovery times to reach post-injection groundwater compositions. The results show a strongmore » correlation between cumulative injected CO₂ mass and maximum plume pH volumes and a positive correlation between CO₂ flux, cumulative injected CO₂, and plume recovery times, with secondary dependence on permeability.« less