Specification of the near-Earth space environment with SHIELDS
Journal Article
·
· Journal of Atmospheric and Solar-Terrestrial Physics
more »
- Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
- Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Beihang Univ., Beijing (China)
- Univ. of Michigan, Ann Arbor, MI (United States)
- KTH Royal Institute of Technology, Stockholm (Sweden)
- Air Force Research Lab., Kirtland AFB, NM (United States)
- Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Space Science Institute, Boulder, CO (United States)
- Space Science Institute, Boulder, CO (United States); New Mexico Consortium, Los Alamos, NM (United States)
- British Antarctic Survey, England (United Kingdom)
Here, predicting variations in the near-Earth space environment that can lead to spacecraft damage and failure is one example of “space weather” and a big space physics challenge. A project recently funded through the Los Alamos National Laboratory (LANL) Directed Research and Development (LDRD) program aims at developing a new capability to understand, model, and predict Space Hazards Induced near Earth by Large Dynamic Storms, the SHIELDS framework. The project goals are to understand the dynamics of the surface charging environment (SCE), the hot (keV) electrons representing the source and seed populations for the radiation belts, on both macro- and micro-scale. Important physics questions related to particle injection and acceleration associated with magnetospheric storms and substorms, as well as plasma waves, are investigated. These challenging problems are addressed using a team of world-class experts in the fields of space science and computational plasma physics, and state-of-the-art models and computational facilities. A full two-way coupling of physics-based models across multiple scales, including a global MHD (BATS-R-US) embedding a particle-in-cell (iPIC3D) and an inner magnetosphere (RAM-SCB) codes, is achieved. New data assimilation techniques employing in situ satellite data are developed; these provide an order of magnitude improvement in the accuracy in the simulation of the SCE. SHIELDS also includes a post-processing tool designed to calculate the surface charging for specific spacecraft geometry using the Curvilinear Particle-In-Cell (CPIC) code that can be used for reanalysis of satellite failures or for satellite design.
- Research Organization:
- Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
- Sponsoring Organization:
- LDRD; USDOE
- Grant/Contract Number:
- AC52-06NA25396
- OSTI ID:
- 1411353
- Alternate ID(s):
- OSTI ID: 1618155
- Report Number(s):
- LA-UR--17-23782
- Journal Information:
- Journal of Atmospheric and Solar-Terrestrial Physics, Journal Name: Journal of Atmospheric and Solar-Terrestrial Physics Vol. 177; ISSN 1364-6826
- Publisher:
- ElsevierCopyright Statement
- Country of Publication:
- United States
- Language:
- English
Similar Records
SHIELDS Final Technical Report
Operational advances in ring current modeling using RAM-SCB
Cold Plasma Measurements
Technical Report
·
Tue Oct 03 00:00:00 EDT 2017
·
OSTI ID:1396150
Operational advances in ring current modeling using RAM-SCB
Conference
·
Thu Dec 02 23:00:00 EST 2010
·
OSTI ID:1043538
Cold Plasma Measurements
Technical Report
·
Tue May 14 00:00:00 EDT 2024
·
OSTI ID:2350621