skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Converter topologies for common mode voltage reduction

Abstract

An inverter includes a three-winding transformer, a DC-AC inverter electrically coupled to the first winding of the transformer, a cycloconverter electrically coupled to the second winding of the transformer, and an active filter electrically coupled to the third winding of the transformer. The DC-AC inverter is adapted to convert the input DC waveform to an AC waveform delivered to the transformer at the first winding. The cycloconverter is adapted to convert an AC waveform received at the second winding of the transformer to the output AC waveform having a grid frequency of the AC grid. The active filter is adapted to sink and source power with one or more energy storage devices based on a mismatch in power between the DC source and the AC grid. At least two of the DC-AC inverter, the cycloconverter, or the active filter are electrically coupled via a common reference electrical interconnect.

Inventors:
Publication Date:
Research Org.:
SunPower Corporation, San Jose, CA (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1409820
Patent Number(s):
9,825,556
Application Number:
15/080,142
Assignee:
SunPower Corporation (San Jose, CA) DOEEE
DOE Contract Number:
EE0005341
Resource Type:
Patent
Resource Relation:
Patent File Date: 2016 Mar 24
Country of Publication:
United States
Language:
English
Subject:
24 POWER TRANSMISSION AND DISTRIBUTION

Citation Formats

Rodriguez, Fernando. Converter topologies for common mode voltage reduction. United States: N. p., 2017. Web.
Rodriguez, Fernando. Converter topologies for common mode voltage reduction. United States.
Rodriguez, Fernando. 2017. "Converter topologies for common mode voltage reduction". United States. doi:. https://www.osti.gov/servlets/purl/1409820.
@article{osti_1409820,
title = {Converter topologies for common mode voltage reduction},
author = {Rodriguez, Fernando},
abstractNote = {An inverter includes a three-winding transformer, a DC-AC inverter electrically coupled to the first winding of the transformer, a cycloconverter electrically coupled to the second winding of the transformer, and an active filter electrically coupled to the third winding of the transformer. The DC-AC inverter is adapted to convert the input DC waveform to an AC waveform delivered to the transformer at the first winding. The cycloconverter is adapted to convert an AC waveform received at the second winding of the transformer to the output AC waveform having a grid frequency of the AC grid. The active filter is adapted to sink and source power with one or more energy storage devices based on a mismatch in power between the DC source and the AC grid. At least two of the DC-AC inverter, the cycloconverter, or the active filter are electrically coupled via a common reference electrical interconnect.},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = 2017,
month =
}

Patent:

Save / Share:
  • A bidirectional AC-DC converter is presented with reduced passive component size and common mode electro-magnetic interference. The converter includes an improved input stage formed by two coupled differential inductors, two coupled common and differential inductors, one differential capacitor and two common mode capacitors. With this input structure, the volume, weight and cost of the input stage can be reduced greatly. Additionally, the input current ripple and common mode electro-magnetic interference can be greatly attenuated, so lower switching frequency can be adopted to achieve higher efficiency.
  • In some embodiments of the disclosed inverter topologies, an inverter may include a full bridge LLC resonant converter, a first boost converter, and a second boost converter. In such embodiments, the first and second boost converters operate in an interleaved manner. In other disclosed embodiments, the inverter may include a half-bridge inverter circuit, a resonant circuit, a capacitor divider circuit, and a transformer.
  • This report presents the results of an investigation into the merits of using a back-to-back voltage source converter (BTB-VSC) as an alternative to a conventional back-to-back high voltage DC link (HVDC). The report presents the basic benefits of the new technology along with the basic control blocks needed to implement the design. The report also describes a model of the BTB-VSC implemented in EMTDC{trademark} and discusses the use of the model. Simulation results, showing how the model responds to various control actions and system disturbances, are presented. This modeling work developed a detailed EMTDC{trademark} model using the appropriate converter technologymore » and magnetic interface configuration. Various possible converter and magnetic interface configurations were examined and the most promising configuration was used for the model. The chosen configuration minimizes the number of high voltage transformers needed and minimizes the complexity non-standard interfacing transformers. There is no need for transformers with phase shifts other than zero or thirty degrees (wye-wye or wye-delta). The only non-standard feature is the necessity of bringing the neutral side of the high voltage winding on the wye-wye unit out through bushings and to insulate the wye-wye transformer for the system voltage which is twice the transformer winding voltage. The developed EMTDC{trademark} model was used to demonstrate the possibility of achieving independent control of the real power transmitted and the voltages at the AC terminals. The model also demonstrates the ability to interconnect weak AC systems without the necessity of additional voltage support equipment as is the case with the conventional back-to-back DC interconnection. The model has been shown to work with short circuit ratios less than 2 based on the total rating of the high voltage transformers.« less
  • A high-power power supply produces a controllable, constant high voltage output under varying and arcing loads. The power supply includes a voltage regulator, an inductor, an inverter for producing a high frequency square wave current of alternating polarity, an improved inverter voltage clamping circuit, a step up transformer, an output rectifier for producing a dc voltage at the output of each module, and a current sensor for sensing output current. The power supply also provides dynamic response to varying loads by controlling the voltage regulator duty cycle and circuitry is provided for sensing incipient arc currents at the output ofmore » the power supply to simultaneously decouple the power supply circuitry from the arcing load. The power supply includes a plurality of discrete switching type dc--dc converter modules. 5 Figs.« less
  • Disclosed is a voltage balanced multilevel converter for high power AC applications such as adjustable speed motor drives and back-to-back DC intertie of adjacent power systems. This converter provides a multilevel rectifier, a multilevel inverter, and a DC link between the rectifier and the inverter allowing voltage balancing between each of the voltage levels within the multilevel converter. The rectifier is equipped with at least one phase leg and a source input node for each of the phases. The rectifier is further equipped with a plurality of rectifier DC output nodes. The inverter is equipped with at least one phasemore » leg and a load output node for each of the phases. The inverter is further equipped with a plurality of inverter DC input nodes. The DC link is equipped with a plurality of rectifier charging means and a plurality of inverter discharging means. The plurality of rectifier charging means are connected in series with one of the rectifier charging means disposed between and connected in an operable relationship with each adjacent pair of rectifier DC output nodes. The plurality of inverter discharging means are connected in series with one of the inverter discharging means disposed between and connected in an operable relationship with each adjacent pair of inverter DC input nodes. Each of said rectifier DC output nodes are individually electrically connected to the respective inverter DC input nodes. By this means, each of the rectifier DC output nodes and each of the inverter DC input nodes are voltage balanced by the respective charging and discharging of the rectifier charging means and the inverter discharging means. 15 figs.« less