Department of Chemical and Biological Engineering Drexel University Philadelphia PA 19104 USA
Department of Materials Science and Engineering Drexel University Philadelphia PA 19104 USA
Renewable Energy Helmholtz‐Zentrum Berlin für Materialien und Energie GmbH Hahn‐Meitner‐Platz 1 D‐14109 Berlin Germany, Energy Materials In‐Situ Laboratory Berlin (EMIL) Helmholtz‐Zentrum Berlin für Materialien und Energie GmbH Albert‐Einstein‐Str. 15 D‐12489 Berlin Germany
EMAT‐ University of Antwerp Groenenborgerlaan 171 B‐2020 Antwerp Belgium
Renewable Energy Helmholtz‐Zentrum Berlin für Materialien und Energie GmbH Hahn‐Meitner‐Platz 1 D‐14109 Berlin Germany
MANA/Nano‐Electronics Materials Unit National Institute for Materials Science (NIMS) 1‐1 Namiki Tsukuba Ibaraki 305‐0044 Japan
Synchrotron X‐ray Station at SPring‐8 NIMS. 1‐1‐1 Kouto Sayo‐cho Hyogo 679‐5148 Japan, Quantum Beam Unit NIMS 1‐2‐1 Sengen Tsukuba Ibaraki 305‐0047 Japan
Renewable Energy Helmholtz‐Zentrum Berlin für Materialien und Energie GmbH Hahn‐Meitner‐Platz 1 D‐14109 Berlin Germany, Energy Materials In‐Situ Laboratory Berlin (EMIL) Helmholtz‐Zentrum Berlin für Materialien und Energie GmbH Albert‐Einstein‐Str. 15 D‐12489 Berlin Germany, Institut für Physik und Chemie Brandenburgische Technische Universität Cottbus‐Senftenberg Platz der Deutschen Einheit 1 D‐03046 Cottbus Germany
The electronic properties of LaFeO 3 /LaMnO 3 epitaxial heterojunctions are investigated to determine the valence and conduction band offsets and the nominal Mn and Fe valence states at the interface. Studying a systematic series of (LaFeO 3 ) n /(LaMnO 3 ) m bilayers ( m ≈ 50) epitaxially grown in the (001) orientation using molecular beam epitaxy, layer‐resolved electron energy loss spectroscopy reveals a lack of significant interfacial charge transfer, with a nominal 3+ valence state observed for both Mn and Fe across the interface. Through a combination of variable angle spectroscopic ellipsometry and hard X‐ray photoelectron spectroscopy, type I energy level alignments are obtained at the LaFeO 3 /LaMnO 3 interface with positive valence and conduction band offsets of (1.20 ± 0.07) eV and (0.5–0.7 ± 0.3) eV, respectively, with minimal band bending. Variable temperature resistivity measurements reveal that the bilayers remain insulating and that the presence of the heterojunction does not result in a conducting interface.
Smolin, Sergey Y., Choquette, Amber K., Wilks, Regan G., Gauquelin, Nicolas, Félix, Roberto, Gerlach, Dominic, Ueda, Shigenori, Krick, Alex L., Verbeeck, Johan, Bär, Marcus, Baxter, Jason B., & May, Steven J. (2017). Energy Level Alignment and Cation Charge States at the LaFeO <sub>3</sub> /LaMnO <sub>3</sub> (001) Heterointerface. Advanced Materials Interfaces, 4(14). https://doi.org/10.1002/admi.201700183
@article{osti_1401544,
author = {Smolin, Sergey Y. and Choquette, Amber K. and Wilks, Regan G. and Gauquelin, Nicolas and Félix, Roberto and Gerlach, Dominic and Ueda, Shigenori and Krick, Alex L. and Verbeeck, Johan and Bär, Marcus and others},
title = {Energy Level Alignment and Cation Charge States at the LaFeO <sub>3</sub> /LaMnO <sub>3</sub> (001) Heterointerface},
annote = { The electronic properties of LaFeO 3 /LaMnO 3 epitaxial heterojunctions are investigated to determine the valence and conduction band offsets and the nominal Mn and Fe valence states at the interface. Studying a systematic series of (LaFeO 3 ) n /(LaMnO 3 ) m bilayers ( m ≈ 50) epitaxially grown in the (001) orientation using molecular beam epitaxy, layer‐resolved electron energy loss spectroscopy reveals a lack of significant interfacial charge transfer, with a nominal 3+ valence state observed for both Mn and Fe across the interface. Through a combination of variable angle spectroscopic ellipsometry and hard X‐ray photoelectron spectroscopy, type I energy level alignments are obtained at the LaFeO 3 /LaMnO 3 interface with positive valence and conduction band offsets of (1.20 ± 0.07) eV and (0.5–0.7 ± 0.3) eV, respectively, with minimal band bending. Variable temperature resistivity measurements reveal that the bilayers remain insulating and that the presence of the heterojunction does not result in a conducting interface. },
doi = {10.1002/admi.201700183},
url = {https://www.osti.gov/biblio/1401544},
journal = {Advanced Materials Interfaces},
issn = {ISSN 2196-7350},
number = {14},
volume = {4},
place = {Germany},
publisher = {Wiley Blackwell (John Wiley & Sons)},
year = {2017},
month = {04}}
Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 601, Issue 1-2https://doi.org/10.1016/j.nima.2008.12.244