Application of copper thiocyanate for high open‐circuit voltages of CdTe solar cells
- Department of Physics and Astronomy, Wright Center for Photovoltaics Innovation and Commercialization University of Toledo Toledo OH 43606 USA
Abstract
Copper thiocyanate (CuSCN) has proven to be a low‐cost, efficient hole‐transporting material for the emerging organic–inorganic perovskite solar cells. Herein, we report that CuSCN can also be applied to CdTe thin‐film solar cells to achieve high open‐circuit voltages ( V OC s). By optimizing the thickness of the thermally evaporated CuSCN films, CdTe cells fabricated by close space sublimation in the superstrate configuration have achieved V OC s as high as 872 mV, which is about 20–25 mV higher than the highest V OC for the reference cells using the standard Cu/Au back contacts. CuSCN is a wide bandgap p ‐type conductor with a conduction band higher than that of CdTe, leading to a conduction band offset that reflects electrons in CdTe, partially explaining the improved V OC s. However, due to the low conductivity of CuSCN, CdTe cells using CuSCN/Au back contacts exhibited slightly lower fill factors than the cells using Cu/Au back contacts. With optimized CdS:O window layers, the power conversion efficiency of the best CdTe cell, using CuSCN/Au back contact, is 14.7%: slightly lower than that of the best cell (15.2%) using Cu/Au back contact. Copyright © 2015 John Wiley & Sons, Ltd.
- Sponsoring Organization:
- USDOE
- OSTI ID:
- 1401147
- Journal Information:
- Progress in Photovoltaics, Journal Name: Progress in Photovoltaics Journal Issue: 1 Vol. 24; ISSN 1062-7995
- Publisher:
- Wiley Blackwell (John Wiley & Sons)Copyright Statement
- Country of Publication:
- United Kingdom
- Language:
- English
Similar Records
Buffer/absorber interface recombination reduction and improvement of back-contact barrier height in CdTe solar cells