skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Microbially-mediated method for synthesis of non-oxide semiconductor nanoparticles

Abstract

The invention is directed to a method for producing non-oxide semiconductor nanoparticles, the method comprising: (a) subjecting a combination of reaction components to conditions conducive to microbially-mediated formation of non-oxide semiconductor nanoparticles, wherein said combination of reaction components comprises i) anaerobic microbes, ii) a culture medium suitable for sustaining said anaerobic microbes, iii) a metal component comprising at least one type of metal ion, iv) a non-metal component comprising at least one non-metal selected from the group consisting of S, Se, Te, and As, and v) one or more electron donors that provide donatable electrons to said anaerobic microbes during consumption of the electron donor by said anaerobic microbes; and (b) isolating said non-oxide semiconductor nanoparticles, which contain at least one of said metal ions and at least one of said non-metals. The invention is also directed to non-oxide semiconductor nanoparticle compositions produced as above and having distinctive properties.

Inventors:
; ; ; ; ; ; ; ; ;
Publication Date:
Research Org.:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1393402
Patent Number(s):
9,768,333
Application Number:
14/246,632
Assignee:
UT-BATTELLE, LLC ORNL
DOE Contract Number:
AC05-00OR22725
Resource Type:
Patent
Resource Relation:
Patent File Date: 2014 Apr 07
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE

Citation Formats

Phelps, Tommy J., Lauf, Robert J., Moon, Ji-Won, Rondinone, Adam Justin, Love, Lonnie J., Duty, Chad Edward, Madden, Andrew Stephen, Li, Yiliang, Ivanov, Ilia N., and Rawn, Claudia Jeanette. Microbially-mediated method for synthesis of non-oxide semiconductor nanoparticles. United States: N. p., 2017. Web.
Phelps, Tommy J., Lauf, Robert J., Moon, Ji-Won, Rondinone, Adam Justin, Love, Lonnie J., Duty, Chad Edward, Madden, Andrew Stephen, Li, Yiliang, Ivanov, Ilia N., & Rawn, Claudia Jeanette. Microbially-mediated method for synthesis of non-oxide semiconductor nanoparticles. United States.
Phelps, Tommy J., Lauf, Robert J., Moon, Ji-Won, Rondinone, Adam Justin, Love, Lonnie J., Duty, Chad Edward, Madden, Andrew Stephen, Li, Yiliang, Ivanov, Ilia N., and Rawn, Claudia Jeanette. Tue . "Microbially-mediated method for synthesis of non-oxide semiconductor nanoparticles". United States. doi:. https://www.osti.gov/servlets/purl/1393402.
@article{osti_1393402,
title = {Microbially-mediated method for synthesis of non-oxide semiconductor nanoparticles},
author = {Phelps, Tommy J. and Lauf, Robert J. and Moon, Ji-Won and Rondinone, Adam Justin and Love, Lonnie J. and Duty, Chad Edward and Madden, Andrew Stephen and Li, Yiliang and Ivanov, Ilia N. and Rawn, Claudia Jeanette},
abstractNote = {The invention is directed to a method for producing non-oxide semiconductor nanoparticles, the method comprising: (a) subjecting a combination of reaction components to conditions conducive to microbially-mediated formation of non-oxide semiconductor nanoparticles, wherein said combination of reaction components comprises i) anaerobic microbes, ii) a culture medium suitable for sustaining said anaerobic microbes, iii) a metal component comprising at least one type of metal ion, iv) a non-metal component comprising at least one non-metal selected from the group consisting of S, Se, Te, and As, and v) one or more electron donors that provide donatable electrons to said anaerobic microbes during consumption of the electron donor by said anaerobic microbes; and (b) isolating said non-oxide semiconductor nanoparticles, which contain at least one of said metal ions and at least one of said non-metals. The invention is also directed to non-oxide semiconductor nanoparticle compositions produced as above and having distinctive properties.},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Tue Sep 19 00:00:00 EDT 2017},
month = {Tue Sep 19 00:00:00 EDT 2017}
}

Patent:

Save / Share: