skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: First-Principles Analysis of Defect-Mediated Li Adsorption on Graphene

Journal Article · · ACS Applied Materials and Interfaces
DOI:https://doi.org/10.1021/am506008w· OSTI ID:1392378
 [1];  [2];  [1];  [2];  [1]
  1. School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
  2. Center for Nanoscale Materials, Argonne National Laboratory, Argonne, Illinois 60439, United States

To evaluate the possible utility of single layer graphene for applications in Li ion batteries, an extensive series of periodic density functional theory (DFT) calculations are performed on graphene sheets with both point and extended defects for a wide range of lithium coverages. Consistent with recent reports, it is found that Li adsorption on defect-free single layer graphene is not thermodynamically favorable compared to bulk metallic Li. However, graphene surfaces activated by defects are generally found to bind Li more strongly, and the interaction strength is sensitive to both the nature of the defects and their densities. Double vacancy defects are found to have much stronger interactions with Li as compared to Stone-Wales defects, and increasing defect density also enhances the interaction of the Stone-Wales defects with Li. Li interaction with one-dimensional extended defects on graphene is additionally found to be strong and leads to increased Li adsorption. A rigorous thermodynamic analysis of these data establishes the theoretical Li storage capacities of the defected graphene structures. In some cases, these capacities are found to approach, although not exceed, those of graphite. The results provide new insights into the fundamental physics of adsorbate interactions with graphene defects and suggest that careful defect engineering of graphene might, ultimately, provide anode electrodes of suitable capacity for lithium ion battery applications.

Research Organization:
Argonne National Lab. (ANL), Argonne, IL (United States)
Sponsoring Organization:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
DOE Contract Number:
AC02-06CH11357
OSTI ID:
1392378
Journal Information:
ACS Applied Materials and Interfaces, Vol. 6, Issue 23; ISSN 1944-8244
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English

Similar Records

First-Principles Analysis of Defect-Mediated Li Adsorption on Graphene
Journal Article · Wed Dec 10 00:00:00 EST 2014 · ACS Applied Materials and Interfaces · OSTI ID:1392378

First-Principles Analysis of Defect-Mediated Li Adsorption on Graphene
Journal Article · Mon Nov 24 00:00:00 EST 2014 · ACS Applied Materials and Interfaces · OSTI ID:1392378

High Capacity Adsorption—Dominated Potassium and Sodium Ion Storage in Activated Crumpled Graphene
Journal Article · Mon Feb 24 00:00:00 EST 2020 · Advanced Energy Materials · OSTI ID:1392378

Related Subjects