skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: The clustering of the SDSS-IV extended Baryon Oscillation Spectroscopic Survey DR14 quasar sample: First measurement of Baryon Acoustic Oscillations between redshift 0.8 and 2.2

Abstract

Here, we present measurements of the Baryon Acoustic Oscillation (BAO) scale in redshift-space using the clustering of quasars. We consider a sample of 147,000 quasars from the extended Baryon Oscillation Spectroscopic Survey (eBOSS) distributed over 2044 square degrees with redshifts 0.8 < z < 2.2 and measure their spherically-averaged clustering in both configuration and Fourier space. Our observational dataset and the 1400 simulated realizations of the dataset allow us to detect a preference for BAO that is greater than 2.5σ . We determine the spherically averaged BAO distance to z = 1.52 to 4.4 per cent precision: D V (z = 1:52) = 3855 170 (r d/r d,fid) Mpc. This is the first time the location of the BAO feature has been measured between redshifts 1 and 2. Our result is fully consistent with the prediction obtained by extrapolating the Planck flat CDM best-fit cosmology. All of our results are consistent with basic large-scale structure (LSS) theory, confirming quasars to be a reliable tracer of LSS, and provide a starting point for numerous cosmological tests to be performed with eBOSS quasar samples. We combine our result with previous, independent, BAO distance measurements to construct an updated BAO distance-ladder. Bu usingmore » these BAO data alone and marginalizing over the length of the standard ruler, we find Ω Λ > 0 at 6.5σ significance when testing a CDM model with free curvature.« less

Authors:
 [1]
  1. Leibniz Inst. for Astrophysics (AIP), Potsdam (Germany). et al
Publication Date:
Research Org.:
Brookhaven National Laboratory (BNL), Upton, NY (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), High Energy Physics (HEP) (SC-25)
OSTI Identifier:
1392224
Alternate Identifier(s):
OSTI ID: 1398497
Report Number(s):
BNL-114222-2017-JA
Journal ID: ISSN 0035-8711
Grant/Contract Number:  
SC0012704; AC02-05CH11231
Resource Type:
Journal Article: Accepted Manuscript
Journal Name:
Monthly Notices of the Royal Astronomical Society
Additional Journal Information:
Journal Volume: 473; Journal Issue: 3; Journal ID: ISSN 0035-8711
Publisher:
Royal Astronomical Society
Country of Publication:
United States
Language:
English
Subject:
79 ASTRONOMY AND ASTROPHYSICS; cosmology: observations; cosmology: large-scale structure of Universe; 72 PHYSICS OF ELEMENTARY PARTICLES AND FIELDS

Citation Formats

Ata, Metin. The clustering of the SDSS-IV extended Baryon Oscillation Spectroscopic Survey DR14 quasar sample: First measurement of Baryon Acoustic Oscillations between redshift 0.8 and 2.2. United States: N. p., 2017. Web. doi:10.1093/mnras/stx2630.
Ata, Metin. The clustering of the SDSS-IV extended Baryon Oscillation Spectroscopic Survey DR14 quasar sample: First measurement of Baryon Acoustic Oscillations between redshift 0.8 and 2.2. United States. doi:10.1093/mnras/stx2630.
Ata, Metin. Tue . "The clustering of the SDSS-IV extended Baryon Oscillation Spectroscopic Survey DR14 quasar sample: First measurement of Baryon Acoustic Oscillations between redshift 0.8 and 2.2". United States. doi:10.1093/mnras/stx2630. https://www.osti.gov/servlets/purl/1392224.
@article{osti_1392224,
title = {The clustering of the SDSS-IV extended Baryon Oscillation Spectroscopic Survey DR14 quasar sample: First measurement of Baryon Acoustic Oscillations between redshift 0.8 and 2.2},
author = {Ata, Metin},
abstractNote = {Here, we present measurements of the Baryon Acoustic Oscillation (BAO) scale in redshift-space using the clustering of quasars. We consider a sample of 147,000 quasars from the extended Baryon Oscillation Spectroscopic Survey (eBOSS) distributed over 2044 square degrees with redshifts 0.8 < z < 2.2 and measure their spherically-averaged clustering in both configuration and Fourier space. Our observational dataset and the 1400 simulated realizations of the dataset allow us to detect a preference for BAO that is greater than 2.5σ . We determine the spherically averaged BAO distance to z = 1.52 to 4.4 per cent precision: DV (z = 1:52) = 3855 170 (rd/rd,fid) Mpc. This is the first time the location of the BAO feature has been measured between redshifts 1 and 2. Our result is fully consistent with the prediction obtained by extrapolating the Planck flat CDM best-fit cosmology. All of our results are consistent with basic large-scale structure (LSS) theory, confirming quasars to be a reliable tracer of LSS, and provide a starting point for numerous cosmological tests to be performed with eBOSS quasar samples. We combine our result with previous, independent, BAO distance measurements to construct an updated BAO distance-ladder. Bu using these BAO data alone and marginalizing over the length of the standard ruler, we find ΩΛ > 0 at 6.5σ significance when testing a CDM model with free curvature.},
doi = {10.1093/mnras/stx2630},
journal = {Monthly Notices of the Royal Astronomical Society},
number = 3,
volume = 473,
place = {United States},
year = {Tue Jun 20 00:00:00 EDT 2017},
month = {Tue Jun 20 00:00:00 EDT 2017}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 23 works
Citation information provided by
Web of Science

Save / Share: