Changes in Soil Carbon Following Afforestation
- OSTI
Quantifying changes in soil C may be an important consideration under large-scale afforestation or reforestation. We reviewed global data on changes in soil C following afforestation, available from 43 published or unpublished studies, encompassing 204 sites. Data were highly variable, with soil C either increasing or decreasing, particularly in young (<10-y) forest stands. Because studies varied in the number of years since forest establishment and the initial soil C content, we calculated change in soil C as a weighted average (i.e. sum of C change divided by sum of years since forest establishment) relative to the soil C content under previous agricultural systems at <10 cm, >10 cm and <30 cm sampling depths. On average, soil C in the <10 cm (or <30 cm) layers generally decreased by 3.46% y–1 (or 0.63% y–1) relative to the initial soil C content during the first five years of afforestation, followed by a decrease in the rate of decline and eventually recovery to C contents found in agricultural soils at about age 30. In plantations older than 30 years, C content was similar to that under the previous agricultural systems within the surface 10 cm of soil, yet at other sampling depths, soil C had increased by between 0.50 and 0.86% y–1. Amounts of C lost or gained by soil are generally small compared with accumulation of C in tree biomass.The most important factors affecting change in soil C were previous land use, climate and the type of forest established. Results suggest that most soil C was lost when softwoods, particularly Pinus radiata plantations, were established on ex-improved pastoral land in temperate regions. Accumulation of soil C was greatest when deciduous hardwoods, or N2-fixing species (either as an understorey or as a plantation), were established on ex-cropped land in tropical or subtropical regions. Long-term management regimes (e.g., stocking, weed control, thinning, fertilizer application and fire management) may also influence accumulation of soil C. Accumulation is maximised by maintaining longer (20-50 year) forest rotations. Furthermore, inclusion of litter in calculations reversed the observed average decrease in soil C, so that amount of C in soil and litter layer was greater than under preceding pasture.
- Research Organization:
- Environmental System Science Data Infrastructure for a Virtual Ecosystem; Carbon Dioxide Information Analysis Center
- OSTI ID:
- 1389525
- Report Number(s):
- doi:10.3334/CDIAC/TCM.008
- Country of Publication:
- United States
- Language:
- English
Similar Records
Afforestation alters the composition of functional genes in soil and biogeochemical processes in South American grasslands
Changes in ecosystem carbon and nitrogen in a loblolly pine plantation over the first 18 years
Contrasting Responses of Soil Inorganic Carbon to Afforestation in Acidic Versus Alkaline Soils
Journal Article
·
Wed Dec 31 23:00:00 EST 2008
· Applied and Environmental Microbiology
·
OSTI ID:966412
Changes in ecosystem carbon and nitrogen in a loblolly pine plantation over the first 18 years
Journal Article
·
Mon Sep 01 00:00:00 EDT 2003
· Soil Science Society of America Journal
·
OSTI ID:978227
Contrasting Responses of Soil Inorganic Carbon to Afforestation in Acidic Versus Alkaline Soils
Journal Article
·
Sat Dec 25 19:00:00 EST 2021
· Global Biogeochemical Cycles
·
OSTI ID:1978510