Anderson Localization of Thermal Phonons Leads to a Thermal Conductivity Maximum
- Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)
Our elastic model of ErAs disordered GaAs/AlAs superlattices exhibits a local thermal conductivity maximum as a function of length due to exponentially suppressed Anderson-localized phonons. By analyzing the sample-to-sample fluctuations in the dimensionless conductance, g, the transition from diffusive to localized transport is identified as the crossover from the multichannel to single-channel transport regime g ≈ 1. Single parameter scaling is shown to hold in this crossover regime through the universality of the probability distribution of g that is independent of system size and disorder strength.
- Research Organization:
- Energy Frontier Research Centers (EFRC) (United States). Solid-State Solar-Thermal Energy Conversion Center (S3TEC)
- Sponsoring Organization:
- USDOE SC Office of Basic Energy Sciences (SC-22)
- Grant/Contract Number:
- SC0001299
- OSTI ID:
- 1388424
- Journal Information:
- Nano Letters, Journal Name: Nano Letters Journal Issue: 12 Vol. 16; ISSN 1530-6984
- Publisher:
- American Chemical SocietyCopyright Statement
- Country of Publication:
- United States
- Language:
- English
Similar Records
Phonon localization in heat conduction
Journal Article
·
Thu Dec 20 19:00:00 EST 2018
· Science Advances
·
OSTI ID:1491683
Related Subjects
42 ENGINEERING
charge transport
defects
materials and chemistry by design
mechanical behavior
optics
phonons
solar (photovoltaic)
solar (thermal)
solid state lighting
spin dynamics
synthesis (novel materials)
synthesis (scalable processing)
synthesis (self-assembly)
thermal conductivity
thermoelectric
charge transport
defects
materials and chemistry by design
mechanical behavior
optics
phonons
solar (photovoltaic)
solar (thermal)
solid state lighting
spin dynamics
synthesis (novel materials)
synthesis (scalable processing)
synthesis (self-assembly)
thermal conductivity
thermoelectric