Progress and critical issues for IFE blanket and chamber research
- LLNL
Advances in high gain target designs for Inertial Fusion Energy (IFE), and the initiation of construction of large megajoule-class laser facilities in the U.S. (National Ignition Facility) and France (Laser-Megajoule) capable of testing the requirements for inertial fusion ignition and propagating burn, have improved the prospects for IFE. Accordingly, there have recently been modest increases in the US fusion research program related to the feasibility of IFE. These research areas include heavy-ion accelerators, Krypton-Fluoride (KrF) gas lasers, diode-pumped, solid-state (DPSSL) lasers, IFE target designs for higher gains, feasibility of low cost IFE target fabrication and accurate injection, and long-lasting IFE fusion chambers and final optics. Since several studies of conceptual IFE power plant and driver designs were completed in 1992-1996 [1-5], U.S. research in the IFE blanket, chamber, and target technology areas has focused on the critical issues relating to the feasibility of IFE concepts towards the goal of achieving economically-competitive and environmentally-attractive fusion energy. This paper discusses the critical issues in these areas, and the approaches taken to address these issues. The U.S. research in these areas, called IFE Chamber and Target Technologies, is coordinated through the Virtual Laboratory for Technology (VLT) formed by the Department of Energy in December 1998.
- Research Organization:
- Lawrence Livermore National Lab., CA (US)
- Sponsoring Organization:
- USDOE Office of Energy Research (ER) (US)
- DOE Contract Number:
- W-7405-ENG-48
- OSTI ID:
- 13884
- Report Number(s):
- UCRL-JC-134976; AT5015032; AT5015032
- Country of Publication:
- United States
- Language:
- English
Similar Records
Overview of IFE chamber and target technologies R&D in the U.S.
Summary of IFE Activities at LLNL