skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Constraints on the magnitude and rate of CO2 dissolution at Bravo Dome natural gas field

Authors:
; ; ;
Publication Date:
Research Org.:
Energy Frontier Research Centers (EFRC) (United States). Center for Frontiers of Subsurface Energy Security (CFSES)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
OSTI Identifier:
1385418
DOE Contract Number:  
SC0001114
Resource Type:
Journal Article
Journal Name:
Proceedings of the National Academy of Sciences of the United States of America
Additional Journal Information:
Journal Volume: 111; Journal Issue: 43; Related Information: CFSES partners with University of Texas at Austin (lead); Sandia National Laboratory; Journal ID: ISSN 0027-8424
Publisher:
National Academy of Sciences, Washington, DC (United States)
Country of Publication:
United States
Language:
English
Subject:
nuclear (including radiation effects), carbon sequestration

Citation Formats

Sathaye, K. J., Hesse, M. A., Cassidy, M., and Stockli, D. F. Constraints on the magnitude and rate of CO2 dissolution at Bravo Dome natural gas field. United States: N. p., 2014. Web. doi:10.1073/pnas.1406076111.
Sathaye, K. J., Hesse, M. A., Cassidy, M., & Stockli, D. F. Constraints on the magnitude and rate of CO2 dissolution at Bravo Dome natural gas field. United States. doi:10.1073/pnas.1406076111.
Sathaye, K. J., Hesse, M. A., Cassidy, M., and Stockli, D. F. Mon . "Constraints on the magnitude and rate of CO2 dissolution at Bravo Dome natural gas field". United States. doi:10.1073/pnas.1406076111.
@article{osti_1385418,
title = {Constraints on the magnitude and rate of CO2 dissolution at Bravo Dome natural gas field},
author = {Sathaye, K. J. and Hesse, M. A. and Cassidy, M. and Stockli, D. F.},
abstractNote = {},
doi = {10.1073/pnas.1406076111},
journal = {Proceedings of the National Academy of Sciences of the United States of America},
issn = {0027-8424},
number = 43,
volume = 111,
place = {United States},
year = {2014},
month = {10}
}

Works referenced in this record:

CO2 capture and storage: are we ready?
journal, January 2009

  • Orr, Jr., Franklin M.
  • Energy & Environmental Science, Vol. 2, Issue 5
  • DOI: 10.1039/b822107n

Ultimate Regime of High Rayleigh Number Convection in a Porous Medium
journal, May 2012


Preface to Symposium THESIS-2011
journal, November 2012


Carbon dioxide dissolution in structural and stratigraphic traps
journal, November 2013

  • Szulczewski, M. L.; Hesse, M. A.; Juanes, R.
  • Journal of Fluid Mechanics, Vol. 736
  • DOI: 10.1017/jfm.2013.511

Upper mantle origin for Harding County well gases
journal, February 1987


Onset of convection in a gravitationally unstable diffusive boundary layer in porous media
journal, February 2006


Equatorial Aridity in Western Pangea: Lower Permian Loessite and Dolomitic Paleosols in Northeastern New Mexico, U.S.A.
journal, September 2001


Predictive modeling of CO2 sequestration in deep saline sandstone reservoirs: Impacts of geochemical kinetics
journal, March 2013


On a Linear Stability Problem Related to Underground CO$_2$ Storage
journal, January 2009

  • Wessel-Berg, Dag
  • SIAM Journal on Applied Mathematics, Vol. 70, Issue 4
  • DOI: 10.1137/070702655

Natural occurrences as analogues for the geological disposal of carbon dioxide
journal, June 1996


Terrestrial xenon isotope constraints on the early history of the Earth
journal, June 1985

  • Ozima, M.; Podosek, F. A.; Igarashi, G.
  • Nature, Vol. 315, Issue 6019
  • DOI: 10.1038/315471a0

Solubility trapping in formation water as dominant CO2 sink in natural gas fields
journal, April 2009

  • Gilfillan, Stuart M. V.; Lollar, Barbara Sherwood; Holland, Greg
  • Nature, Vol. 458, Issue 7238
  • DOI: 10.1038/nature07852

Role of Convective Mixing in the Long-Term Storage of Carbon Dioxide in Deep Saline Formations
journal, September 2005

  • Ennis-King, Jonathan P.; Paterson, Lincoln
  • SPE Journal, Vol. 10, Issue 03
  • DOI: 10.2118/84344-PA

Convective Instability and Mass Transport of Diffusion Layers in a Hele-Shaw Geometry
journal, March 2011


Variable-density groundwater flow and solute transport in heterogeneous porous media: approaches, resolutions and future challenges
journal, November 2001

  • Simmons, Craig T.; Fenstemaker, Thomas R.; Sharp, John M.
  • Journal of Contaminant Hydrology, Vol. 52, Issue 1-4
  • DOI: 10.1016/S0169-7722(01)00160-7

Spatial characterization of the location of potentially leaky wells penetrating a deep saline aquifer in a mature sedimentary basin
journal, June 2004


The long-term fate of CO 2 in the subsurface: natural analogues for CO 2 storage
journal, January 2004


Xenon in CO 2 well gas revisited
journal, January 1978

  • Phinney, D.; Tennyson, J.; Frick, U.
  • Journal of Geophysical Research, Vol. 83, Issue B5
  • DOI: 10.1029/JB083iB05p02313

<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2013-01-01">January 2013</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#7cb342;"> Nereson, A.</span> </li> <li> Geosphere, Vol. 9, Issue 3</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1130/GES00837.1" class="text-muted" target="_blank" rel="noopener noreferrer">10.1130/GES00837.1<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1016/j.advwatres.2013.10.010" target="_blank" rel="noopener noreferrer" class="name">Convective mixing in formations with horizontal barriers<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2013-12-01">December 2013</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#7cb342;"> Elenius, Maria T.; Gasda, Sarah E.</span> </li> <li> Advances in Water Resources, Vol. 62</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1016/j.advwatres.2013.10.010" class="text-muted" target="_blank" rel="noopener noreferrer">10.1016/j.advwatres.2013.10.010<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1016/j.advwatres.2012.10.012" target="_blank" rel="noopener noreferrer" class="name">Continuum-scale convective mixing in geological CO2 sequestration in anisotropic and heterogeneous saline aquifers<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2013-03-01">March 2013</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#7cb342;"> Chen, Cheng; Zeng, Lingzao; Shi, Liangsheng</span> </li> <li> Advances in Water Resources, Vol. 53</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1016/j.advwatres.2012.10.012" class="text-muted" target="_blank" rel="noopener noreferrer">10.1016/j.advwatres.2012.10.012<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1016/j.gca.2007.10.009" target="_blank" rel="noopener noreferrer" class="name">The noble gas geochemistry of natural CO2 gas reservoirs from the Colorado Plateau and Rocky Mountain provinces, USA<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2008-02-01">February 2008</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#7cb342;"> Gilfillan, Stuart M. V.; Ballentine, Chris J.; Holland, Greg</span> </li> <li> Geochimica et Cosmochimica Acta, Vol. 72, Issue 4</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1016/j.gca.2007.10.009" class="text-muted" target="_blank" rel="noopener noreferrer">10.1016/j.gca.2007.10.009<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1016/S0009-2541(02)00263-2" target="_blank" rel="noopener noreferrer" class="name">An improved model calculating CO2 solubility in pure water and aqueous NaCl solutions from 273 to 533 K and from 0 to 2000 bar<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2003-02-01">February 2003</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#7cb342;"> Duan, Zhenhao; Sun, Rui</span> </li> <li> Chemical Geology, Vol. 193, Issue 3-4</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1016/S0009-2541(02)00263-2" class="text-muted" target="_blank" rel="noopener noreferrer">10.1016/S0009-2541(02)00263-2<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1103/PhysRevLett.109.264503" target="_blank" rel="noopener noreferrer" class="name">Scaling of Convective Mixing in Porous Media<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2012-12-01">December 2012</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#7cb342;"> Hidalgo, Juan J.; Fe, Jaime; Cueto-Felgueroso, Luis</span> </li> <li> Physical Review Letters, Vol. 109, Issue 26</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1103/PhysRevLett.109.264503" class="text-muted" target="_blank" rel="noopener noreferrer">10.1103/PhysRevLett.109.264503<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1016/j.ijggc.2009.12.011" target="_blank" rel="noopener noreferrer" class="name">Geological storage of CO2 in saline aquifers—A review of the experience from existing storage operations<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2010-07-01">July 2010</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#7cb342;"> Michael, K.; Golab, A.; Shulakova, V.</span> </li> <li> International Journal of Greenhouse Gas Control, Vol. 4, Issue 4</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1016/j.ijggc.2009.12.011" class="text-muted" target="_blank" rel="noopener noreferrer">10.1016/j.ijggc.2009.12.011<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1016/0196-8904(94)90060-4" target="_blank" rel="noopener noreferrer" class="name">Aquifer disposal of CO2: Hydrodynamic and mineral trapping<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="1994-04-01">April 1994</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#7cb342;"> Bachu, Stefan; Gunter, W. D.; Perkins, E. H.</span> </li> <li> Energy Conversion and Management, Vol. 35, Issue 4</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1016/0196-8904(94)90060-4" class="text-muted" target="_blank" rel="noopener noreferrer">10.1016/0196-8904(94)90060-4<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1073/pnas.1018590108" target="_blank" rel="noopener noreferrer" class="name">Assessing the health risks of natural CO2 seeps in Italy<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2011-09-12">September 2011</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#7cb342;"> Roberts, J. J.; Wood, R. A.; Haszeldine, R. S.</span> </li> <li> Proceedings of the National Academy of Sciences, Vol. 108, Issue 40</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1073/pnas.1018590108" class="text-muted" target="_blank" rel="noopener noreferrer">10.1073/pnas.1018590108<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1038/nature03182" target="_blank" rel="noopener noreferrer" class="name">Neon isotopes constrain convection and volatile origin in the Earth's mantle<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2005-01-01">January 2005</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#7cb342;"> Ballentine, Chris J.; Marty, Bernard; Sherwood Lollar, Barbara</span> </li> <li> Nature, Vol. 433, Issue 7021</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1038/nature03182" class="text-muted" target="_blank" rel="noopener noreferrer">10.1038/nature03182<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1073/pnas.1115347109" target="_blank" rel="noopener noreferrer" class="name">Lifetime of carbon capture and storage as a climate-change mitigation technology<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2012-03-19">March 2012</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#7cb342;"> Szulczewski, M. L.; MacMinn, C. W.; Herzog, H. J.</span> </li> <li> Proceedings of the National Academy of Sciences, Vol. 109, Issue 14</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1073/pnas.1115347109" class="text-muted" target="_blank" rel="noopener noreferrer">10.1073/pnas.1115347109<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1021/es301280t" target="_blank" rel="noopener noreferrer" class="name">Effect of Dissolved CO <sub>2</sub> on a Shallow Groundwater System: A Controlled Release Field Experiment<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2012-08-22">August 2012</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#7cb342;"> Trautz, Robert C.; Pugh, John D.; Varadharajan, Charuleka</span> </li> <li> Environmental Science & Technology, Vol. 47, Issue 1</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1021/es301280t" class="text-muted" target="_blank" rel="noopener noreferrer">10.1021/es301280t<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.2110/jsr.2011.24" target="_blank" rel="noopener noreferrer" class="name">Dolomite in Permian Paleosols of the Bravo Dome CO2 Field, U.S.A.: Permian Reflux Followed by Late Recrystallization at Elevated Temperature<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2011-04-01">April 2011</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#7cb342;"> Hartig, K. A.; Soreghan, G. S.; Goldstein, R. H.</span> </li> <li> Journal of Sedimentary Research, Vol. 81, Issue 4</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.2110/jsr.2011.24" class="text-muted" target="_blank" rel="noopener noreferrer">10.2110/jsr.2011.24<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1016/S0009-2541(98)00024-2" target="_blank" rel="noopener noreferrer" class="name">Modeling of the temperature sensitivity of the apatite (U–Th)/He thermochronometer<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="1998-06-01">June 1998</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#7cb342;"> Wolf, R. A.; Farley, K. A.; Kass, D. M.</span> </li> <li> Chemical Geology, Vol. 148, Issue 1-2</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1016/S0009-2541(98)00024-2" class="text-muted" target="_blank" rel="noopener noreferrer">10.1016/S0009-2541(98)00024-2<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> </div> <div class="pagination-container small"> <a class="pure-button prev page" href="#" rel="prev"><span class="fa fa-angle-left"></span></a><ul class="pagination d-inline-block" style="padding-left:.2em;"></ul><a class="pure-button next page" href="#" rel="next"><span class="fa fa-angle-right"></span></a> </div> </div> </div> <div class="col-sm-3 order-sm-3"> <ul class="nav nav-stacked"> <li class="active"><a href="" class="reference-type-filter tab-nav" data-tab="biblio-references" data-filter="type" data-pattern="*"><span class="fa fa-angle-right"></span> All References</a></li> <li class="small" style="margin-left:.75em; text-transform:capitalize;"><a href="" class="reference-type-filter tab-nav" data-tab="biblio-references" data-filter="type" data-pattern="journal"><span class="fa fa-angle-right"></span> journal<small class="text-muted"> (32)</small></a></li> </ul> <div style="margin-top:2em;"> <form class="pure-form small text-muted reference-search"> <label for="reference-search-text" class="sr-only">Search</label> <input class="search form-control pure-input-1" id="reference-search-text" placeholder="Search" style="margin-bottom:10px;" /> <fieldset> <div style="margin-left:1em; font-weight:normal; line-height: 1.6em;"><input type="radio" class="sort" name="references-sort" data-sort="name" style="position:relative;top:2px;" id="reference-search-sort-name"><label for="reference-search-sort-name" style="margin-left: .3em;">Sort by title</label></div> <div style="margin-left:1em; font-weight:normal; line-height: 1.6em;"><input type="radio" class="sort" name="references-sort" data-sort="date" data-order="desc" style="position:relative;top:2px;" id="reference-search-sort-date"><label for="reference-search-sort-date" style="margin-left: .3em;">Sort by date</label></div> </fieldset> <div class="text-left" style="margin-left:1em;"> <a href="" class="filter-clear clearfix" title="Clear filter / sort" style="font-weight:normal; float:none;">[ × clear filter / sort ]</a> </div> </form> </div> </div> </div> </section> <section id="biblio-related" class="tab-content tab-content-sec " data-tab="biblio"> <div class="row"> <div class="col-sm-9 order-sm-9"> <section id="biblio-similar" class="tab-content tab-content-sec active" data-tab="related"> <div class="padding"> <p class="lead text-muted" style="font-size: 18px; margin-top:0px;">Similar records in OSTI.GOV collections:</p> <aside> <ul class="item-list" itemscope itemtype="http://schema.org/ItemList" style="padding-left:0; list-style-type: none;"> <li> <div class="article item document" itemprop="itemListElement" itemscope itemtype="http://schema.org/WebPage"><meta itemprop="position" content="0" /><div class="item-info"> <h2 class="title" itemprop="name headline"><a href="/biblio/1168277-constraints-magnitude-rate-co2-dissolution-bravo-dome-natural-gas-field" itemprop="url">Constraints on the magnitude and rate of CO <sub>2</sub> dissolution at Bravo Dome natural gas field</a></h2> <div class="metadata"> <small class="text-muted" style="text-transform:uppercase;display:block;line-height:2.5em;">Journal Article</small><span class="authors"> <span class="author">Sathaye, Kiran J.</span> ; <span class="author">Hesse, Marc A.</span> ; <span class="author">Cassidy, M.</span> ; <span class="author">...</span> <span class="text-muted pubdata"> - Proceedings of the National Academy of Sciences of the United States of America</span> </span> </div> <div class="abstract">The injection of carbon dioxide (CO <sub>2</sub>) captured at large point sources into deep saline aquifers can significantly reduce anthropogenic CO <sub>2</sub> emissions from fossil fuels. Dissolution of the injected CO <sub>2</sub> into the formation brine is a trapping mechanism that helps to ensure the long-term security of geological CO <sub>2</sub> storage. We use thermochronology to estimate the timing of CO <sub>2</sub> emplacement at Bravo Dome, a large natural CO <sub>2</sub> field at a depth of 700 m in New Mexico. Together with estimates of the total mass loss from the field we present, to our knowledge, the first constraints<a href='#' onclick='$(this).hide().next().show().next().show();return false;' style='margin-left:10px;'>more »</a><span style='display:none;'> on the magnitude, mechanisms, and rates of CO <sub>2</sub> dissolution on millennial timescales. Apatite (U-Th)/He thermochronology records heating of the Bravo Dome reservoir due to the emplacement of hot volcanic gases 1.2–1.5 Ma. The CO <sub>2</sub> accumulation is therefore significantly older than previous estimates of 10 ka, which demonstrates that safe long-term geological CO <sub>2</sub> storage is possible. Here, integrating geophysical and geochemical data, we estimate that 1.3 Gt CO <sub>2</sub> are currently stored at Bravo Dome, but that only 22% of the emplaced CO <sub>2</sub> has dissolved into the brine over 1.2 My. Roughly 40% of the dissolution occurred during the emplacement. The CO <sub>2</sub> dissolved after emplacement exceeds the amount expected from diffusion and provides field evidence for convective dissolution with a rate of 0.1 g/(m <sup>2</sup>y). Finally, the similarity between Bravo Dome and major US saline aquifers suggests that significant amounts of CO <sub>2</sub> are likely to dissolve during injection at US storage sites, but that convective dissolution is unlikely to trap all injected CO <sub>2</sub> on the 10-ky timescale typically considered for storage projects.</span><a href='#' onclick='$(this).hide().prev().hide().prev().show();return false;' style='margin-left:10px;display:none;'>« less</a></div><div class="metadata-links small clearfix text-muted" style="margin-top:15px;"> <span class="fa fa-book text-muted" aria-hidden="true"></span> Cited by 22<div class="pure-menu pure-menu-horizontal pull-right" style="width:unset;"> <ul class="pure-menu-list"> <li class="pure-menu-item"><span class="item-info-ftlink">DOI: <a class="misc doi-link " href="https://doi.org/10.1073/pnas.1406076111" target="_blank" rel="noopener" title="Link to document DOI" data-ostiid="1168277" data-product-type="Journal Article" data-product-subtype="AM" >10.1073/pnas.1406076111</a></span></li> <li class="pure-menu-item"><span class="item-info-ftlink"><a class="misc fulltext-link " href="/servlets/purl/1168277" title="Link to document media" target="_blank" rel="noopener" data-ostiid="1168277" data-product-type="Journal Article" data-product-subtype="AM" >Full Text Available</a></span></li> </ul> </div> </div> </div> <div class="clearfix"></div> </div> </li> <li> <div class="article item document" itemprop="itemListElement" itemscope itemtype="http://schema.org/WebPage"><meta itemprop="position" content="1" /><div class="item-info"> <h2 class="title" itemprop="name headline"><a href="/biblio/1371169-co-solubility-aqueous-solutions-containing-na-ca-cl-so-hco-effects-electrostricted-water-ion-hydration-thermodynamics" itemprop="url">CO 2 solubility in aqueous solutions containing Na <sup>+</sup> , Ca <sup>2+</sup> , Cl <sup>-</sup> , SO <sub>4</sub> <sup>2-</sup> and HCO <sub>3</sub> <sup>-</sup> : The effects of electrostricted water and ion hydration thermodynamics</a></h2> <div class="metadata"> <small class="text-muted" style="text-transform:uppercase;display:block;line-height:2.5em;">Journal Article</small><span class="authors"> <span class="author">Gilbert, Kimberly</span> ; <span class="author">Bennett, Philip C.</span> ; <span class="author">Wolfe, Will</span> ; <span class="author">...</span> <span class="text-muted pubdata"> - Applied Geochemistry</span> </span> </div> <div class="abstract">Dissolution of CO2 into deep subsurface brines for carbon sequestration is regarded as one of the few viable means of reducing the amount of CO2 entering the atmosphere. Ions in solution partially control the amount of CO2 that dissolves, but the mechanisms of the ion's influence are not clearly understood and thus CO2 solubility is difficult to predict. In this study, CO2 solubility was experimentally determined in water, NaCl, CaCl2, Na2SO4, and NaHCO3 solutions and a mixed brine similar to the Bravo Dome natural CO2 reservoir; ionic strengths ranged up to 3.4 molal, temperatures to 140 °C, and CO2 pressures<a href='#' onclick='$(this).hide().next().show().next().show();return false;' style='margin-left:10px;'>more »</a><span style='display:none;'> to 35.5 MPa. Increasing ionic strength decreased CO2 solubility for all solutions when the salt type remained unchanged, but ionic strength was a poor predictor of CO2 solubility in solutions with different salts. A new equation was developed to use ion hydration number to calculate the concentration of electrostricted water molecules in solution. Dissolved CO2 was strongly correlated (R2 = 0.96) to electrostricted water concentration. Strong correlations were also identified between CO2 solubility and hydration enthalpy and hydration entropy. These linear correlation equations predicted CO2 solubility within 1% of the Bravo Dome brine and within 10% of two mixed brines from literature (a 10 wt % NaCl + KCl + CaCl2 brine and a natural Na+, Ca2+, Cl- type brine with minor amounts of Mg2+, K+, Sr2+ and Br-).</span><a href='#' onclick='$(this).hide().prev().hide().prev().show();return false;' style='margin-left:10px;display:none;'>« less</a></div><div class="metadata-links small clearfix text-muted" style="margin-top:15px;"> <div class="pure-menu pure-menu-horizontal pull-right" style="width:unset;"> <ul class="pure-menu-list"> <li class="pure-menu-item"><span class="item-info-ftlink">DOI: <a class="misc doi-link " href="https://doi.org/10.1016/j.apgeochem.2016.02.002" target="_blank" rel="noopener" title="Link to document DOI" data-ostiid="1371169" data-product-type="Journal Article" data-product-subtype="AC" >10.1016/j.apgeochem.2016.02.002</a></span></li> </ul> </div> </div> </div> <div class="clearfix"></div> </div> </li> <li> <div class="article item document" itemprop="itemListElement" itemscope itemtype="http://schema.org/WebPage"><meta itemprop="position" content="2" /><div class="item-info"> <h2 class="title" itemprop="name headline"><a href="/biblio/5786834-geology-bravo-dome-carbon-dioxide-gas-field-new-mexico" itemprop="url">Geology of Bravo Dome carbon dioxide gas field, New Mexico</a></h2> <div class="metadata"> <small class="text-muted" style="text-transform:uppercase;display:block;line-height:2.5em;">Conference</small><span class="authors"> <span class="author">Broadhead, R.F.</span> <span class="text-muted pubdata"> - AAPG Bulletin (American Association of Petroleum Geologists); (United States)</span> </span> </div> <div class="abstract">The Bravo Dome carbon dioxide gas field is located in Union and Harding Counties of northeast New Mexico. The Bravo Dome field covers approximately 800,000 acres, but areal boundaries of the field have not been fully defined. Production in 1989 was 113 bcf of gas from 272 wells. Cumulative production at the end of 1989 was 626 bcf. Estimated recoverable reserves are more than 10 tcf. The gas is 98-99% CO{sub 2}. Most CO{sub 2} produced from Bravo Dome is used for enhanced oil recovery in the Permian basin. The Bravo Dome is a faulted, southeast-plunging, basement-cored anticlinal nose. It<a href='#' onclick='$(this).hide().next().show().next().show();return false;' style='margin-left:10px;'>more »</a><span style='display:none;'> is bordered on the east and south by large high-angle faults of Pennsylvanian and Wolfcampian (Early Permian) age. The principal reservoir in the Bravo Dome field is the Tubb sandstone (Leonardian-Permian) at depths of 1,900 to 2,950 ft. The Tubb consists of 0-400 ft of fine- to medium-grained, well-sorted, orange feldspathic sandstone. It rests unconformably on Precambrian basement on the highest parts of the Bravo Dome and is not offset by late Paleozoic faults that form the dome. The Cimmaron Anhydrite (Leonardian-Permian) conformably overlies the Tubb and is a vertical seal. The trap at Bravo Dome has structural and stratigraphic aspects. Drape of Tubb sandstone over the dome created structural closure on the northeast, southeast, and southwest flanks of the field. Trapping on the northwest flank of the field is associated with regional northwest thinning of the Tubb.</span><a href='#' onclick='$(this).hide().prev().hide().prev().show();return false;' style='margin-left:10px;display:none;'>« less</a></div><div class="metadata-links small clearfix text-muted" style="margin-top:15px;"> <div class="pure-menu pure-menu-horizontal pull-right" style="width:unset;"> </div> </div> </div> <div class="clearfix"></div> </div> </li> <li> <div class="article item document" itemprop="itemListElement" itemscope itemtype="http://schema.org/WebPage"><meta itemprop="position" content="3" /><div class="item-info"> <h2 class="title" itemprop="name headline"><a href="/biblio/5628310-geology-bravo-dome-carbon-dioxide-gas-field-northeastern-new-mexico" itemprop="url">Geology of Bravo Dome carbon dioxide gas field, northeastern New Mexico</a></h2> <div class="metadata"> <small class="text-muted" style="text-transform:uppercase;display:block;line-height:2.5em;">Conference</small><span class="authors"> <span class="author">Broadhead, R.F.</span> <span class="text-muted pubdata"> - AAPG Bulletin (American Association of Petroleum Geologists); (USA)</span> </span> </div> <div class="abstract">The Bravo Dome carbon dioxide gas field is located in Union and Harding Counties of northeastern New Mexico. The Bravo Dome field covers approximately 800,000 acres, but areal boundaries have not been fully defined. Production in 1987 was 134 bcf of gas from 276 wells. Cumulative production at the end of 1987 was 378 bcf. Estimated recoverable reserves are 10 tcf. The gas is 98-99% CO{sub 2}. Most CO{sub 2} produced from Bravo dome is used for enhanced oil recovery in the Permian basin. Bravo dome is a faulted, southeast-plunging, basement-cored anticlinal nose. It is bordered on the east and<a href='#' onclick='$(this).hide().next().show().next().show();return false;' style='margin-left:10px;'>more »</a><span style='display:none;'> south by large high-angle faults of Pennsylvanian and Wolfcampian (Early Permian) age. The principal reservoir in the Bravo Dome field is the Tubb sandstone (Leonardian-Permian) at depths of 1,900 to 2,950 ft. The Tubb consists of up to 400 ft of fine to medium-grained, well-sorted, orange feldspathic sandstone. It rests unconformably on Precambrian basement on the highest parts of the Bravo dome and is not offset by late Paleozoic faults that form the dome. The Cimarron anhydrite (Leonardian-Permian) conformably overlies the Tubb and is a vertical seal. The trap at Bravo dome has structural and stratigraphic aspects. Drape of Tubb sandstone over the dome created structural closure on the northeast, southeast, and southwest flanks of the field. Trapping on the northwest flank of the field is associated with regional northwest thinning of the Tubb.</span><a href='#' onclick='$(this).hide().prev().hide().prev().show();return false;' style='margin-left:10px;display:none;'>« less</a></div><div class="metadata-links small clearfix text-muted" style="margin-top:15px;"> <div class="pure-menu pure-menu-horizontal pull-right" style="width:unset;"> </div> </div> </div> <div class="clearfix"></div> </div> </li> <li> <div class="article item document" itemprop="itemListElement" itemscope itemtype="http://schema.org/WebPage"><meta itemprop="position" content="4" /><div class="item-info"> <h2 class="title" itemprop="name headline"><a href="/biblio/1433850-assessment-co2-storage-resources-depleted-oil-gas-fields-ship-shoal-area-gulf-mexico" itemprop="url">Assessment of CO2 Storage Resources in Depleted Oil and Gas Fields in the Ship Shoal Area, Gulf of Mexico</a></h2> <div class="metadata"> <small class="text-muted" style="text-transform:uppercase;display:block;line-height:2.5em;">Technical Report</small><span class="authors"> <span class="author">Bruno, Mike</span> ; <span class="author">Young, Jean</span> ; <span class="author">Oliver, Nicky</span> ; <span class="author">...</span> <span class="text-muted pubdata"></span> </span> </div> <div class="abstract">The Gulf of Mexico is one of the most important regions in the United States for energy resources and infrastructure. Gulf of Mexico federal offshore oil and gas production accounts for 17% of total U.S. crude oil production and 5% of total U.S. gas production (EIA Gulf of Mexico Fact Sheet). This region presents an excellent combination of high need and significant opportunity for large scale geologic storage of CO2. The Ship Shoal Area is located about 20 miles offshore Louisiana within the Gulf Coast federal waters. Miocene and Pliocene sediments in the Ship Shoal Area are proven to provide<a href='#' onclick='$(this).hide().next().show().next().show();return false;' style='margin-left:10px;'>more »</a><span style='display:none;'> excellent and secure traps for oil and gas. The Ship Shoal Area contains a large number of depleted oil and gas fields either currently abandoned, or planned for abandonment by 2025, which may provide very significant potential CO2 storage capacity. GeoMechanics Technologies conducted a comprehensive research project to better characterize Neogene sediments in the Ship Shoal Area for high volume CO2 storage. The data generated from literature, well data, well log, and formation evaluation were input into Rockwork 16 geologic software to create a detailed geologic model for the Ship Shoal study area. The geologic grids were then fed into TOUGH2, the gas migration model software and FLAC 3D, the geomechanical model software. The fluid flow modeling for both the Miocene and Pliocene simulation from both Block 107 and Block 84 indicated that Pliocene and Miocene are a good reservoir for the CO2 sequestration. Thirty years of CO2 injection (at a rate of 1 million metric tons CO2 per year) and 30 years of observation simulations were run with the fluid flow modeling. The 3D geomechanical modeling for Ship Shoal Block 107 and Block 84 were developed to evaluate induced surface deformation and potential fault reactivation after 30 years CO2 injection at base of Pliocene and at upper Miocene injection locations. Evaluation results indicate low to no risks for fault slips or fault reactivation. Twelve well bores and 76 well bores for Ship Shoal Blocks 84 and 107 respectively were reviewed for their cement history. Most wells (57 out of 76 and 7 out of 12 wells in Ship Shoal Block 107 and 84 respectively) have good integrity. Nineteen and 5 wells (in Ship Shoal Block 107 and 84 respectively) with no top plug, incomplete cement or Plug and Abandonment information are given yellow cautionary indicators. These cautionary wells may provide leakage paths of CO2 through the well bores to the USDWs. Using our Quantitative Risk & Decision Analysis Tool (QRDAT) for caprock integrity evaluation, we compared Ship Shoal’s risk to that of In Salah, Sleipner, Kevin Dome, Loudon, Illinois Industrial CCS and Wilmington Graben. We found the risk at the Ship Shoal Blocks 84 and 107 fields are similar to the known CO2 active sequestration sites, but lower than the Wilmington Graben turbidities offshore California studied site. The risk of natural seismicity in the Gulf of Mexico is relatively low. Geomechanics Technologies has documented the top 25 CO2 emission sources within the close proximity of the Ship Shoal Block 84 and 107 fields. All the offshore and onshore pipelines have been digitized and can be viewed in an interactive website (http://www.geomechanicstech.com/shipshoal.html). We also performed a feasibility study on the potential for converting existing oil or gas pipelines for CO2 transport. There are abandoned, idled and retired onshore and offshore pipelines. However, there is no standard specification for maximum pipeline pressures needed for CO2 transport. It is a function of design, materials, and testing provided; thus it will be the responsibility of the pipeline operator to correctly determine, maintain and operate within the limits of the pipelines. There are a few transit corridors extending from onshore Louisiana (Cailou Bay) to offshore trunk-lines. The cost for constructing a pipeline has increased about 46% from 2015 to an average cost of $5,064,046 per mile in 2016. We use the NETL CO2 storage resource mass estimate to calculate the potential resources for Ship Shoal Block 84 and 107 fields using the depleted oil and gas reservoir volume and sand volume generated from our geologic modeling. The estimated storage resource results are greater when using the sand volumes derived through geologic modeling than the oil and gas reservoir data. The difference is due to the depleted oil and gas reservoir information not accounting for the water-flooded sand located below the oil/gas-water contact or unproductive sand units. Resource calculation using the sand volume obtained through geologic modeling overestimate the storage capacity as the model accounts for all sand within the formation, not just the interconnected sand.</span><a href='#' onclick='$(this).hide().prev().hide().prev().show();return false;' style='margin-left:10px;display:none;'>« less</a></div><div class="metadata-links small clearfix text-muted" style="margin-top:15px;"> <div class="pure-menu pure-menu-horizontal pull-right" style="width:unset;"> <ul class="pure-menu-list"> <li class="pure-menu-item"><span class="item-info-ftlink">DOI: <a class="misc doi-link " href="https://doi.org/10.2172/1433850" target="_blank" rel="noopener" title="Link to document DOI" data-ostiid="1433850" data-product-type="Technical Report" data-product-subtype="" >10.2172/1433850</a></span></li> <li class="pure-menu-item"><span class="item-info-ftlink"><a class="misc fulltext-link " href="/servlets/purl/1433850" title="Link to document media" target="_blank" rel="noopener" data-ostiid="1433850" data-product-type="Technical Report" data-product-subtype="" >Full Text Available</a></span></li> </ul> </div> </div> </div> <div class="clearfix"></div> </div> </li> </ul> </aside> </div> </section> </div> <div class="col-sm-3 order-sm-3"> <ul class="nav nav-stacked"> <li class="active"><a class="tab-nav disabled" data-tab="related" style="color: #636c72 !important; opacity: 1;"><span class="fa fa-angle-right"></span> Similar Records</a></li> </ul> </div> </div> </section> </div></div> </div> </div> </section> <footer class="" style="background-color:#f9f9f9; /* padding-top: 0.5rem; */"> <div class="footer-minor"> <div class="container"> <hr class="footer-separator" /> <div class="text-center" style="margin-top:1.25rem;"> <div class="pure-menu pure-menu-horizontal"> <ul class="pure-menu-list" id="footer-org-menu"> <li class="pure-menu-item d-block d-inline-small"> <a href="https://energy.gov" target="_blank" rel="noopener noreferrer"> <img src="" class="sprite sprite-footer-us-doe-min" alt="U.S. Department of Energy" /> </a> </li> <li class="pure-menu-item d-block d-inline-small"> <a href="https://www.energy.gov/science/office-science" target="_blank" rel="noopener noreferrer"> <img src="" class="sprite sprite-footer-office-of-science-min" alt="Office of Science" /> </a> </li> <li class="pure-menu-item d-block d-inline-small"> <a href="/"> <img src="" class="sprite sprite-footer-osti-min" alt="Office of Scientific and Technical Information" /> </a> </li> </ul> </div> </div> <div class="text-center small" style="margin-top:0.5em;margin-bottom:2.0rem;"> <div class="pure-menu pure-menu-horizontal"> <ul class="pure-menu-list"> <li class="pure-menu-item"><a href="/disclaim" class="pure-menu-link"><span class="fa fa-institution"></span> Website Policies <span class="d-none d-sm-inline" style="color:#737373;">/ Important Links</span></a></li> <li class="pure-menu-item"><a href="/contact" class="pure-menu-link"><span class="fa fa-comments-o"></span> Contact Us</a></li> <li class="d-block d-md-none mb-1"></li> <li class="pure-menu-item"><a href="https://www.facebook.com/ostigov" target="_blank" rel="noopener noreferrer" class="pure-menu-link social"><span class="fa fa-facebook" style=""></span></a></li> <li class="pure-menu-item"><a href="https://twitter.com/OSTIgov" target="_blank" rel="noopener noreferrer" class="pure-menu-link social"><span class="fa fa-twitter" style=""></span></a></li> <li class="pure-menu-item"><a href="https://www.youtube.com/user/ostigov" target="_blank" rel="noopener noreferrer" class="pure-menu-link social"><span class="fa fa-youtube-play" style=""></span></a></li> </ul> </div> </div> </div> </div> </footer> <link href="/css/ostigov.fonts.191107.1502.css" rel="stylesheet"> <script src="/js/ostigov.191107.1502.js"></script><noscript></noscript> <script defer src="/js/ostigov.biblio.191107.1502.js"></script><noscript></noscript> <script defer src="/js/lity.js"></script><noscript></noscript> <script async type="text/javascript" src="/js/Universal-Federated-Analytics-Min.js?agency=DOE" id="_fed_an_ua_tag"></script><noscript></noscript> </body> <!-- OSTI.GOV v.191107.1502 --> </html>