Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Preliminary numerical modeling for the G-Tunnel welded tuff mining experiment; Yucca Mountain site characterization project

Technical Report ·
DOI:https://doi.org/10.2172/138246· OSTI ID:138246

Yucca Mountain, located in Southern Nevada, is to be considered as a potential site for a nuclear waste repository. Located in Rainier Mesa on the Nevada Test Site, G-Tunnel has been the site of a series of experiments, part of whose purpose is to evaluate measurement techniques for rock mechanics before testing in the Exploratory Shaft. Rainier Mesa is composed of welded and nonwelded tuffs that have thermal and mechanical properties and stress states similar to those of tuffs expected to be encountered at Yucca Mountain. A series of finite element calculations were performed to aid in designing instrumentation for the experiments in G-Tunnel and later to correlate with measured data. In this report are presented the results of the preliminary finite element calculations performed in conjunction with experimental measurements of drift convergence, or closure, and rock mass relaxation zones made before, during, and after completing the welded tuff mining experiment in G-Tunnel. Tape extensometer measurements of drift convergences and measurements determined by multiple point borehole extensometers are compared with corresponding calculated values using linear elastic and jointed rock material models. 9 refs., 25 figs., 7 tabs.

Research Organization:
Sandia National Labs., Albuquerque, NM (United States)
Sponsoring Organization:
USDOE, Washington, DC (United States)
DOE Contract Number:
AC04-76DP00789
OSTI ID:
138246
Report Number(s):
SAND--88-0810; ON: DE92000944
Country of Publication:
United States
Language:
English