Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Thin film ceria–bismuth bilayer electrolytes for intermediate temperature solid oxide fuel cells with La0.85Sr0.15MnO3-δ–Y0.25Bi0.75O1.5 cathodes

Journal Article · · Materials Research Bulletin
Thin film electrolytes of bilayer bismuth oxide/ceria are developed for intermediate temperature solid oxide fuel cells. Y0.25Bi0.75O1.5 is deposited via Direct Current magnetron sputtering technique on an Sm0.2Ce0.8O1.90 electrolyte film which is prepared by a dry-pressing process on an NiO–Sm0.2Ce0.8O1.90 substrate. La0.85Sr0.15MnO3-δ–Y0.25Bi0.75O1.5 composite is applied onto the Y0.25Bi0.75O1.5 film as the cathode to form a single cell. Cells with 6-μm-thick Y0.25Bi0.75O1.5 and 26-μm-thick Sm0.2Ce0.8O1.90 bilayer electrolytes exhibit improved open circuit voltages and power density compared with those obtained with only Sm0.2Ce0.8O1.90 electrolytes. The open circuit voltages are comparable and power densities are higher than those previously reported for solid oxide fuel cells with thick bilayer electrolytes using noble metals such as Pt as the electrodes. Impedance spectra show that the change of electrolyte resistance is negligible while the cathodic interfacial polarization resistance decreased significantly when the Y0.25Bi0.75O1.5 layer is added to form the Sm0.2Ce0.8O1.90/Y0.25Bi0.75O1.5 bilayer electrolytes.
Research Organization:
Energy Frontier Research Centers (EFRC) (United States). Heterogeneous Functional Materials Center (HeteroFoaM)
Sponsoring Organization:
USDOE SC Office of Basic Energy Sciences (SC-22)
DOE Contract Number:
SC0001061
OSTI ID:
1381885
Journal Information:
Materials Research Bulletin, Journal Name: Materials Research Bulletin Journal Issue: 5 Vol. 45; ISSN 0025-5408
Publisher:
Elsevier
Country of Publication:
United States
Language:
English