skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Exciton Migration and Amplified Quenching on Two-Dimensional Metal–Organic Layers

Journal Article · · Journal of the American Chemical Society
DOI:https://doi.org/10.1021/jacs.7b02470· OSTI ID:1379432

The dimensionality dependency of resonance energy transfer is of great interest due to its importance in understanding energy transfer on cell membranes and in low-dimension nanostructures. Light harvesting two-dimensional metal–organic layers (2D-MOLs) and three-dimensional metal–organic frameworks (3D-MOFs) provide comparative models to study such dimensionality dependence with molecular accuracy. Here we report the construction of 2D-MOLs and 3D-MOFs from a donor ligand 4,4',4''-(benzene-1,3,5-triyl-tris(ethyne-2,1-diyl))tribenzoate (BTE) and a doped acceptor ligand 3,3',3''-nitro-4,4',4''-(benzene-1,3,5-triyl-tris(ethyne-2,1-diyl))tribenzoate (BTE-NO2). These 2D-MOLs and 3D-MOFs are connected by similar hafnium clusters, with key differences in the topology and dimensionality of the metal–ligand connection. Energy transfer from donors to acceptors through the 2D-MOL or 3D-MOF skeletons is revealed by measuring and modeling the fluorescence quenching of the donors. We found that energy transfer in 3D-MOFs is more efficient than that in 2D-MOLs, but excitons on 2D-MOLs are more accessible to external quenchers as compared with those in 3D-MOFs. These results not only provide support to theoretical analysis of energy transfer in low dimensions, but also present opportunities to use efficient exciton migration in 2D materials for light-harvesting and fluorescence sensing.

Research Organization:
Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)
Sponsoring Organization:
FOREIGN
OSTI ID:
1379432
Journal Information:
Journal of the American Chemical Society, Vol. 139, Issue 20; ISSN 0002-7863
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
ENGLISH

Similar Records

Visible-light harvesting pyrene-based MOFs as efficient ROS generators
Journal Article · Wed Sep 18 00:00:00 EDT 2019 · Chemical Science · OSTI ID:1379432

A water-processable organic electron-selective layer for solution-processed inverted organic solar cells
Journal Article · Mon Feb 03 00:00:00 EST 2014 · Applied Physics Letters · OSTI ID:1379432

A novel cryogenic magnetic refrigerant metal-organic framework based on 1D gadolinium(III) chain
Journal Article · Wed Feb 15 00:00:00 EST 2017 · Journal of Solid State Chemistry · OSTI ID:1379432