skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Investigation of uranium molecular species using laser ablation

Abstract

The goal of this project is to investigate the dynamic evolution of uranium oxide (UOx) molecular species in a rapidly cooling low-temperature plasma using a coupled experimental and modeling approach. Our purpose is to develop quantitative constraints on the UOx phase chemistry under physical conditions similar to that of a nuclear fireball at the time of debris condensation. This work is motivated by a need to better understand the factors controlling uranium chemical fractionation in post-detonation nuclear debris.

Authors:
 [1]
  1. Univ. of Illinois, Urbana, IL (United States). Dept. of Nuclear, Plasma, and Radiological Engineering
Publication Date:
Research Org.:
Univ. of Illinois at Urbana-Champaign, IL (United States)
Sponsoring Org.:
USDOE; Defense Threat Reduction Agency (DTRA) (United States)
OSTI Identifier:
1377768
Report Number(s):
LLNL-TR-734616
DOE Contract Number:
AC52-07NA27344; HDTRA1-16-1-0020
Resource Type:
Technical Report
Country of Publication:
United States
Language:
English
Subject:
70 PLASMA PHYSICS AND FUSION TECHNOLOGY; 38 RADIATION CHEMISTRY, RADIOCHEMISTRY, AND NUCLEAR CHEMISTRY

Citation Formats

Curreli, Davide. Investigation of uranium molecular species using laser ablation. United States: N. p., 2017. Web. doi:10.2172/1377768.
Curreli, Davide. Investigation of uranium molecular species using laser ablation. United States. doi:10.2172/1377768.
Curreli, Davide. 2017. "Investigation of uranium molecular species using laser ablation". United States. doi:10.2172/1377768. https://www.osti.gov/servlets/purl/1377768.
@article{osti_1377768,
title = {Investigation of uranium molecular species using laser ablation},
author = {Curreli, Davide},
abstractNote = {The goal of this project is to investigate the dynamic evolution of uranium oxide (UOx) molecular species in a rapidly cooling low-temperature plasma using a coupled experimental and modeling approach. Our purpose is to develop quantitative constraints on the UOx phase chemistry under physical conditions similar to that of a nuclear fireball at the time of debris condensation. This work is motivated by a need to better understand the factors controlling uranium chemical fractionation in post-detonation nuclear debris.},
doi = {10.2172/1377768},
journal = {},
number = ,
volume = ,
place = {United States},
year = 2017,
month = 7
}

Technical Report:

Save / Share:
  • This research involves a systematic study of the dual-laser ablation process to understand the underlying mechanisms of the process, and to investigate the applicability of this technique to the growth of multi-component thin films. In this study, time-of-flight ion probe, emission spectroscopy, and species resolved CCD imaging methods have been used as in-situ diagnostic techniques to investigate experimentally the effect of the process parameters on the plasma ionization, ion spatial distribution, species velocity distribution profiles and expansion profiles for single component systems as well as individual elements of the multi-component material system Cu(InGa)Se{sub 2}. A theoretical model that is consistentmore » with the experimental observations has been developed. Following tasks outlined in the proposal were successfully completed in the time period 8/15/96 to 8/14/00.« less
  • The use of femtosecond laser ablation inductively coupled plasma mass spectrometry was used to demonstrate the feasibility of measuring the isotopic ratio of uranium directly in U-10Mo fuel foils. The measurements were done on both the flat surface and cross sections of bare and Zr clad U-10Mo fuel foil samples. The results for the depleted uranium content measurements were less than 10% of the accepted U235/238 ratio of 0.0020. Sampling was demonstrated for line scans and elemental mapping over large areas. In addition to the U isotopic ratio measurement, the Zr thickness could be measured as well as trace elementalmore » composition if required. A number of interesting features were observed during the feasibility measurements which could provide the basis for further investigation using this methodology. The results demonstrate the feasibility of using fs-LA-ICP-MS for measuring the U isotopic ratio in U-10Mo fuel foils.« less
  • Feasibility tests were conducted using femtosecond and nanosecond laser ablation inductively coupled plasma mass spectrometry for rapid uranium isotopic measurements. The samples used in this study consisted of a range of pg quantities of known 235/238 U solutions as dried spot residues of 300 pL drops on silicon substrates. The samples spanned the following enrichments of 235U: 0.5, 1.5, 2, 3, and 15.1%. In this direct comparison using these particular samples both pulse durations demonstrated near equivalent data can be produced on either system with respect to accuracy and precision. There is no question that either LA-ICP-MS method offers themore » potential for rapid, accurate and precise isotopic measurements of U10Mo materials whether DU, LEU or HEU. The LA-ICP-MS equipment used for this work is commercially available. The program is in the process of validating this work for large samples using center samples strips from Y-12 MP-1 LEU-Mo Casting #1.« less
  • Experiments were performed to understand laser-induced back-ablation of Al film targets with picosecond laser pulses. Al films deposited on the back surface of BK-7 substrates are ablated by picosecond laser pulses propagating into the Al film through the substrate. The ablated Al plume is transversely probed by a time-delayed, two-color sub-picoseond (500 fs) pulse, and this probe is then used to produce self-referencing interferograms and shadowgraphs of the Al plume in flight. Optical emission from the Al target due to LIBA is directed into a time-integrated grating spectrometer, and a time-integrating CCD camera records images of the Al plume emission.more » Ablated Al plumes are also redeposited on to receiving substrates. A post-experimental study of the Al target and recollected deposit characteristics was also done using optical microscopy, interferometry, and profilometry. In this high laser intensity regime, laser-induced substrate ionization and damage strongly limits transmitted laser fluence through the substrate above a threshold fluence. The threshold fluence for this ionization-based transmission limit in the substrate is dependent on the duration of the incident pulse. The substrate ionization can be used as a dynamic control of both transmitted spatial pulse profile and ablated Al plume shape. The efficiency of laser energy transfer between the laser pulse incident on the Al film and the ablated Al plume is estimated to be of order 5% and is a weak function of laser pulsewidth. The Al plume is highly directed. Low plume divergence ({theta}{sub divergence} < 5{sup o}) shows the ablated plume temperature to be very low at long time delays ( T << 0.5 eV at delays of 255 ns). Spectroscopic observations and calculations indicate that, in early time (t < 100 ps), the Al film region near the substrate/metal interface is at temperatures of order 0.5 eV. Interferograms of Al plumes produced with 0.1 {micro}m films show these plumes to be of high neutral atom density (n{sub n} of order 10{sup 18} cm{sup -3}) and weakly ionized (n{sub e}/n{sub n}, < 0.001) at long time delays of order 200 ns. Recollections of Al plumes confirm the low plume divergence and demonstrate high material adhesion to the receiving substrate, as well as a higher Al material yield than that of conventional pulsed laser deposition. Al redepositions are also highly conductive at the deposit/substrate interface, suggesting possible applications in selective laser-assisted bonding.« less
  • The technology currently most favored for the refueling of fusion reactors is the high-velocity injection of solid hydrogen pellets. Design details are presented for a holographic interferometer/shadowgraph used to study the microscopic characteristics of a solid hydrogen pellet ablating in an approx. 1-keV plasma. Experimental data are presented for two sets of experiments in which the interferometer/shadowgraph was used to study approx. 1-mm-diam solid hydrogen pellets injected into the Impurity Study Experiment (ISX-B) tokamak at Oak Ridge National Laboratory (ORNL) at velocities of 1000 m/s. In addition to the use of the holographic interferometer, the pellet ablation process is diagnosedmore » by studying the emission of Balmer-alpha photons and by using the available tokamak diagnostics (Thomson scattering, microwave/far-infrared interferometer, pyroelectric radiometer, hard x-ray detector).« less