skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Noise Characterization and Filtering in the MicroBooNE Liquid Argon TPC

Abstract

The low-noise operation of readout electronics in a liquid argon time projection chamber (LArTPC) is critical to properly extract the distribution of ionization charge deposited on the wire planes of the TPC, especially for the induction planes. This paper describes the characteristics and mitigation of the observed noise in the MicroBooNE detector. The MicroBooNE's single-phase LArTPC comprises two induction planes and one collection sense wire plane with a total of 8256 wires. Current induced on each TPC wire is amplified and shaped by custom low-power, low-noise ASICs immersed in the liquid argon. The digitization of the signal waveform occurs outside the cryostat. Using data from the first year of MicroBooNE operations, several excess noise sources in the TPC were identified and mitigated. The residual equivalent noise charge (ENC) after noise filtering varies with wire length and is found to be below 400 electrons for the longest wires (4.7 m). The response is consistent with the cold electronics design expectations and is found to be stable with time and uniform over the functioning channels. In conclusion, this noise level is significantly lower than previous experiments utilizing warm front-end electronics.

Authors:
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Publication Date:
Research Org.:
Brookhaven National Laboratory (BNL), Upton, NY (United States)
Sponsoring Org.:
USDOE Office of Science (SC), High Energy Physics (HEP) (SC-25)
OSTI Identifier:
1376174
Report Number(s):
BNL-114152-2017-JA
Journal ID: ISSN 1748-0221; R&D Project: PO-022; KA2201020
Grant/Contract Number:
SC0012704
Resource Type:
Journal Article: Accepted Manuscript
Journal Name:
Journal of Instrumentation
Additional Journal Information:
Journal Volume: 12; Journal Issue: 08; Journal ID: ISSN 1748-0221
Publisher:
Institute of Physics (IOP)
Country of Publication:
United States
Language:
English
Subject:
47 OTHER INSTRUMENTATION; cold; electronics; noise; MicroBooNE; time; projection; chambers

Citation Formats

Acciarri, R., Adams, C., An, R., Anthony, J., Asaadi, J., Auger, M., Bagby, L., Balasubramanian, S., Baller, B., Barnes, C., Barr, G., Bass, M., Bay, F., Bishai, M., Blake, A., Bolton, T., Bullard, B., Camilleri, L., Caratelli, D., Carls, B., Fernandez, R. Castillo, Cavanna, F., Chen, H., Church, E., Cianci, D., Cohen, E., Collin, G. H., Conrad, J. M., Convery, M., Crespo-Anadón, J. I., Geronimo, G. De, Tutto, M. Del, Devitt, D., Dytman, S., Eberly, B., Ereditato, A., Sanchez, L. Escudero, Esquivel, J., Fadeeva, A. A., Fleming, B. T., Foreman, W., Furmanski, A. P., Garcia-Gamez, D., Garvey, G. T., Genty, V., Goeldi, D., Gollapinni, S., Graf, N., Gramellini, E., Greenlee, H., Grosso, R., Guenette, R., Hackenburg, A., Hamilton, P., Hen, O., Hewes, J., Hill, C., Ho, J., Horton-Smith, G., Hourlier, A., Huang, E. -C., James, C., de Vries, J. Jan, Jen, C. -M., Jiang, L., Johnson, R. A., Joshi, J., Jostlein, H., Kaleko, D., Karagiorgi, G., Ketchum, W., Kirby, B., Kirby, M., Kobilarcik, T., Kreslo, I., Laube, A., Li, S., Li, Y., Lister, A., Littlejohn, B. R., Lockwitz, S., Lorca, D., Louis, W. C., Luethi, M., Lundberg, B., Luo, X., Marchionni, A., Mariani, C., Marshall, J., Caicedo, D. A. Martinez, Meddage, V., Miceli, T., Mills, G. B., Moon, J., Mooney, M., Moore, C. D., Mousseau, J., Murrells, R., Naples, D., Nienaber, P., Nowak, J., Palamara, O., Paolone, V., Papavassiliou, V., Pate, S. F., Pavlovic, Z., Piasetzky, E., Porzio, D., Pulliam, G., Qian, X., Raaf, J. L., Radeka, V., Rafique, A., Rescia, S., Rochester, L., Rohr, C. Rudolf von, Russell, B., Schmitz, D. W., Schukraft, A., Seligman, W., Shaevitz, M. H., Sinclair, J., Smith, A., Snider, E. L., Soderberg, M., Söldner-Rembold, S., Soleti, S. R., Spentzouris, P., Spitz, J., John, J. St., Strauss, T., Szelc, A. M., Tagg, N., Terao, K., Thomson, M., Thorn, C., Toups, M., Tsai, Y. -T., Tufanli, S., Usher, T., Pontseele, W. Van De, de Water, R. G. Van, Viren, B., Weber, M., Wickremasinghe, D. A., Wolbers, S., Wongjirad, T., Woodruff, K., Yang, T., Yates, L., Yu, B., Zeller, G. P., Zennamo, J., and Zhang, C.. Noise Characterization and Filtering in the MicroBooNE Liquid Argon TPC. United States: N. p., 2017. Web. doi:10.1088/1748-0221/12/08/P08003.
Acciarri, R., Adams, C., An, R., Anthony, J., Asaadi, J., Auger, M., Bagby, L., Balasubramanian, S., Baller, B., Barnes, C., Barr, G., Bass, M., Bay, F., Bishai, M., Blake, A., Bolton, T., Bullard, B., Camilleri, L., Caratelli, D., Carls, B., Fernandez, R. Castillo, Cavanna, F., Chen, H., Church, E., Cianci, D., Cohen, E., Collin, G. H., Conrad, J. M., Convery, M., Crespo-Anadón, J. I., Geronimo, G. De, Tutto, M. Del, Devitt, D., Dytman, S., Eberly, B., Ereditato, A., Sanchez, L. Escudero, Esquivel, J., Fadeeva, A. A., Fleming, B. T., Foreman, W., Furmanski, A. P., Garcia-Gamez, D., Garvey, G. T., Genty, V., Goeldi, D., Gollapinni, S., Graf, N., Gramellini, E., Greenlee, H., Grosso, R., Guenette, R., Hackenburg, A., Hamilton, P., Hen, O., Hewes, J., Hill, C., Ho, J., Horton-Smith, G., Hourlier, A., Huang, E. -C., James, C., de Vries, J. Jan, Jen, C. -M., Jiang, L., Johnson, R. A., Joshi, J., Jostlein, H., Kaleko, D., Karagiorgi, G., Ketchum, W., Kirby, B., Kirby, M., Kobilarcik, T., Kreslo, I., Laube, A., Li, S., Li, Y., Lister, A., Littlejohn, B. R., Lockwitz, S., Lorca, D., Louis, W. C., Luethi, M., Lundberg, B., Luo, X., Marchionni, A., Mariani, C., Marshall, J., Caicedo, D. A. Martinez, Meddage, V., Miceli, T., Mills, G. B., Moon, J., Mooney, M., Moore, C. D., Mousseau, J., Murrells, R., Naples, D., Nienaber, P., Nowak, J., Palamara, O., Paolone, V., Papavassiliou, V., Pate, S. F., Pavlovic, Z., Piasetzky, E., Porzio, D., Pulliam, G., Qian, X., Raaf, J. L., Radeka, V., Rafique, A., Rescia, S., Rochester, L., Rohr, C. Rudolf von, Russell, B., Schmitz, D. W., Schukraft, A., Seligman, W., Shaevitz, M. H., Sinclair, J., Smith, A., Snider, E. L., Soderberg, M., Söldner-Rembold, S., Soleti, S. R., Spentzouris, P., Spitz, J., John, J. St., Strauss, T., Szelc, A. M., Tagg, N., Terao, K., Thomson, M., Thorn, C., Toups, M., Tsai, Y. -T., Tufanli, S., Usher, T., Pontseele, W. Van De, de Water, R. G. Van, Viren, B., Weber, M., Wickremasinghe, D. A., Wolbers, S., Wongjirad, T., Woodruff, K., Yang, T., Yates, L., Yu, B., Zeller, G. P., Zennamo, J., & Zhang, C.. Noise Characterization and Filtering in the MicroBooNE Liquid Argon TPC. United States. doi:10.1088/1748-0221/12/08/P08003.
Acciarri, R., Adams, C., An, R., Anthony, J., Asaadi, J., Auger, M., Bagby, L., Balasubramanian, S., Baller, B., Barnes, C., Barr, G., Bass, M., Bay, F., Bishai, M., Blake, A., Bolton, T., Bullard, B., Camilleri, L., Caratelli, D., Carls, B., Fernandez, R. Castillo, Cavanna, F., Chen, H., Church, E., Cianci, D., Cohen, E., Collin, G. H., Conrad, J. M., Convery, M., Crespo-Anadón, J. I., Geronimo, G. De, Tutto, M. Del, Devitt, D., Dytman, S., Eberly, B., Ereditato, A., Sanchez, L. Escudero, Esquivel, J., Fadeeva, A. A., Fleming, B. T., Foreman, W., Furmanski, A. P., Garcia-Gamez, D., Garvey, G. T., Genty, V., Goeldi, D., Gollapinni, S., Graf, N., Gramellini, E., Greenlee, H., Grosso, R., Guenette, R., Hackenburg, A., Hamilton, P., Hen, O., Hewes, J., Hill, C., Ho, J., Horton-Smith, G., Hourlier, A., Huang, E. -C., James, C., de Vries, J. Jan, Jen, C. -M., Jiang, L., Johnson, R. A., Joshi, J., Jostlein, H., Kaleko, D., Karagiorgi, G., Ketchum, W., Kirby, B., Kirby, M., Kobilarcik, T., Kreslo, I., Laube, A., Li, S., Li, Y., Lister, A., Littlejohn, B. R., Lockwitz, S., Lorca, D., Louis, W. C., Luethi, M., Lundberg, B., Luo, X., Marchionni, A., Mariani, C., Marshall, J., Caicedo, D. A. Martinez, Meddage, V., Miceli, T., Mills, G. B., Moon, J., Mooney, M., Moore, C. D., Mousseau, J., Murrells, R., Naples, D., Nienaber, P., Nowak, J., Palamara, O., Paolone, V., Papavassiliou, V., Pate, S. F., Pavlovic, Z., Piasetzky, E., Porzio, D., Pulliam, G., Qian, X., Raaf, J. L., Radeka, V., Rafique, A., Rescia, S., Rochester, L., Rohr, C. Rudolf von, Russell, B., Schmitz, D. W., Schukraft, A., Seligman, W., Shaevitz, M. H., Sinclair, J., Smith, A., Snider, E. L., Soderberg, M., Söldner-Rembold, S., Soleti, S. R., Spentzouris, P., Spitz, J., John, J. St., Strauss, T., Szelc, A. M., Tagg, N., Terao, K., Thomson, M., Thorn, C., Toups, M., Tsai, Y. -T., Tufanli, S., Usher, T., Pontseele, W. Van De, de Water, R. G. Van, Viren, B., Weber, M., Wickremasinghe, D. A., Wolbers, S., Wongjirad, T., Woodruff, K., Yang, T., Yates, L., Yu, B., Zeller, G. P., Zennamo, J., and Zhang, C.. 2017. "Noise Characterization and Filtering in the MicroBooNE Liquid Argon TPC". United States. doi:10.1088/1748-0221/12/08/P08003.
@article{osti_1376174,
title = {Noise Characterization and Filtering in the MicroBooNE Liquid Argon TPC},
author = {Acciarri, R. and Adams, C. and An, R. and Anthony, J. and Asaadi, J. and Auger, M. and Bagby, L. and Balasubramanian, S. and Baller, B. and Barnes, C. and Barr, G. and Bass, M. and Bay, F. and Bishai, M. and Blake, A. and Bolton, T. and Bullard, B. and Camilleri, L. and Caratelli, D. and Carls, B. and Fernandez, R. Castillo and Cavanna, F. and Chen, H. and Church, E. and Cianci, D. and Cohen, E. and Collin, G. H. and Conrad, J. M. and Convery, M. and Crespo-Anadón, J. I. and Geronimo, G. De and Tutto, M. Del and Devitt, D. and Dytman, S. and Eberly, B. and Ereditato, A. and Sanchez, L. Escudero and Esquivel, J. and Fadeeva, A. A. and Fleming, B. T. and Foreman, W. and Furmanski, A. P. and Garcia-Gamez, D. and Garvey, G. T. and Genty, V. and Goeldi, D. and Gollapinni, S. and Graf, N. and Gramellini, E. and Greenlee, H. and Grosso, R. and Guenette, R. and Hackenburg, A. and Hamilton, P. and Hen, O. and Hewes, J. and Hill, C. and Ho, J. and Horton-Smith, G. and Hourlier, A. and Huang, E. -C. and James, C. and de Vries, J. Jan and Jen, C. -M. and Jiang, L. and Johnson, R. A. and Joshi, J. and Jostlein, H. and Kaleko, D. and Karagiorgi, G. and Ketchum, W. and Kirby, B. and Kirby, M. and Kobilarcik, T. and Kreslo, I. and Laube, A. and Li, S. and Li, Y. and Lister, A. and Littlejohn, B. R. and Lockwitz, S. and Lorca, D. and Louis, W. C. and Luethi, M. and Lundberg, B. and Luo, X. and Marchionni, A. and Mariani, C. and Marshall, J. and Caicedo, D. A. Martinez and Meddage, V. and Miceli, T. and Mills, G. B. and Moon, J. and Mooney, M. and Moore, C. D. and Mousseau, J. and Murrells, R. and Naples, D. and Nienaber, P. and Nowak, J. and Palamara, O. and Paolone, V. and Papavassiliou, V. and Pate, S. F. and Pavlovic, Z. and Piasetzky, E. and Porzio, D. and Pulliam, G. and Qian, X. and Raaf, J. L. and Radeka, V. and Rafique, A. and Rescia, S. and Rochester, L. and Rohr, C. Rudolf von and Russell, B. and Schmitz, D. W. and Schukraft, A. and Seligman, W. and Shaevitz, M. H. and Sinclair, J. and Smith, A. and Snider, E. L. and Soderberg, M. and Söldner-Rembold, S. and Soleti, S. R. and Spentzouris, P. and Spitz, J. and John, J. St. and Strauss, T. and Szelc, A. M. and Tagg, N. and Terao, K. and Thomson, M. and Thorn, C. and Toups, M. and Tsai, Y. -T. and Tufanli, S. and Usher, T. and Pontseele, W. Van De and de Water, R. G. Van and Viren, B. and Weber, M. and Wickremasinghe, D. A. and Wolbers, S. and Wongjirad, T. and Woodruff, K. and Yang, T. and Yates, L. and Yu, B. and Zeller, G. P. and Zennamo, J. and Zhang, C.},
abstractNote = {The low-noise operation of readout electronics in a liquid argon time projection chamber (LArTPC) is critical to properly extract the distribution of ionization charge deposited on the wire planes of the TPC, especially for the induction planes. This paper describes the characteristics and mitigation of the observed noise in the MicroBooNE detector. The MicroBooNE's single-phase LArTPC comprises two induction planes and one collection sense wire plane with a total of 8256 wires. Current induced on each TPC wire is amplified and shaped by custom low-power, low-noise ASICs immersed in the liquid argon. The digitization of the signal waveform occurs outside the cryostat. Using data from the first year of MicroBooNE operations, several excess noise sources in the TPC were identified and mitigated. The residual equivalent noise charge (ENC) after noise filtering varies with wire length and is found to be below 400 electrons for the longest wires (4.7 m). The response is consistent with the cold electronics design expectations and is found to be stable with time and uniform over the functioning channels. In conclusion, this noise level is significantly lower than previous experiments utilizing warm front-end electronics.},
doi = {10.1088/1748-0221/12/08/P08003},
journal = {Journal of Instrumentation},
number = 08,
volume = 12,
place = {United States},
year = 2017,
month = 8
}

Journal Article:
Free Publicly Available Full Text
This content will become publicly available on August 4, 2018
Publisher's Version of Record

Save / Share:
  • The low-noise operation of readout electronics in a liquid argon time projection chamber (LArTPC) is critical to properly extract the distribution of ionization charge deposited on the wire planes of the TPC, especially for the induction planes. This paper describes the characteristics and mitigation of the observed noise in the MicroBooNE detector. The MicroBooNE's single-phase LArTPC comprises two induction planes and one collection sense wire plane with a total of 8256 wires. Current induced on each TPC wire is amplified and shaped by custom low-power, low-noise ASICs immersed in the liquid argon. The digitization of the signal waveform occurs outsidemore » the cryostat. Using data from the first year of MicroBooNE operations, several excess noise sources in the TPC were identified and mitigated. The residual equivalent noise charge (ENC) after noise filtering varies with wire length and is found to be below 400 electrons for the longest wires (4.7 m). The response is consistent with the cold electronics design expectations and is found to be stable with time and uniform over the functioning channels. This noise level is significantly lower than previous experiments utilizing warm front-end electronics.« less
  • The proliferation of liquid argon time projection chamber detectors makes the characterization of the dielectric properties of liquid argon a critical task. To improve understanding of these properties, a systematic study of the breakdown electric field in liquid argon was conducted using a dedicated cryostat connected to the MicroBooNE cryogenic system at Fermilab. An electrode sphere-plate geometry was implemented using spheres with diameters of 1.3 mm, 5.0 mm, and 76 mm. The MicroBooNE cryogenic system allowed measurements to be taken at a variety of electronegative contamination levels ranging from a few parts-per-million to tens of parts-per-trillion. The cathode-anode distance wasmore » varied from 0.1 mm to 2.5 cm. The results demonstrate a geometric dependence of the electric field strength at breakdown. This study is the first time that the dependence of the breakdown field on stressed cathode area has been shown for liquid argon.« less
  • Liquid Argon Time Projection Chamber detectors are well suited to study neutrino interactions, and are an intriguing option for future massive detectors capable of measuring the parameters that characterize neutrino oscillations. These detectors combine fine-grained tracking with calorimetry, allowing for excellent imaging and particle identification ability. In this talk the details of the MicroBooNE experiment, a 175 ton LArTPC which will be exposed to Fermilab's Booster Neutrino Beamline starting in 2011, will be presented. The ability of MicroBooNE to differentiate electrons from photons gives the experiment unique capabilities in low energy neutrino interaction measurements.
  • Liquid Argon time projection chamber (LArTPC) is a promising detector technology for future neutrino experiments. MicroBooNE is a upcoming LArTPC neutrino experiment which will be located on-axis of Booster Neutrino Beam (BNB) at Fermilab, USA. The R and D efforts on this detection method and related neutrino interaction measurements are discussed.