skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: FY17 Status Report on the Initial EPP Finite Element Analysis of Grade 91 Steel

Abstract

This report describes a modification to the elastic-perfectly plastic (EPP) strain limits design method to account for cyclic softening in Gr. 91 steel. The report demonstrates that the unmodified EPP strain limits method described in current ASME code case is not conservative for materials with substantial cyclic softening behavior like Gr. 91 steel. However, the EPP strain limits method can be modified to be conservative for softening materials by using softened isochronous stress-strain curves in place of the standard curves developed from unsoftened creep experiments. The report provides softened curves derived from inelastic material simulations and factors describing the transformation of unsoftened curves to a softened state. Furthermore, the report outlines a method for deriving these factors directly from creep/fatigue tests. If the material softening saturates the proposed EPP strain limits method can be further simplified, providing a methodology based on temperature-dependent softening factors that could be implemented in an ASME code case allowing the use of the EPP strain limits method with Gr. 91. Finally, the report demonstrates the conservatism of the modified method when applied to inelastic simulation results and two bar experiments.

Authors:
 [1];  [1]
  1. Argonne National Lab. (ANL), Argonne, IL (United States)
Publication Date:
Research Org.:
Argonne National Lab. (ANL), Argonne, IL (United States)
Sponsoring Org.:
USDOE Office of Nuclear Energy (NE)
OSTI Identifier:
1375457
Report Number(s):
ANL-ART-94
136949
DOE Contract Number:
AC02-06CH11357
Resource Type:
Technical Report
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE

Citation Formats

Messner, M. C., and Sham, T. -L.. FY17 Status Report on the Initial EPP Finite Element Analysis of Grade 91 Steel. United States: N. p., 2017. Web. doi:10.2172/1375457.
Messner, M. C., & Sham, T. -L.. FY17 Status Report on the Initial EPP Finite Element Analysis of Grade 91 Steel. United States. doi:10.2172/1375457.
Messner, M. C., and Sham, T. -L.. 2017. "FY17 Status Report on the Initial EPP Finite Element Analysis of Grade 91 Steel". United States. doi:10.2172/1375457. https://www.osti.gov/servlets/purl/1375457.
@article{osti_1375457,
title = {FY17 Status Report on the Initial EPP Finite Element Analysis of Grade 91 Steel},
author = {Messner, M. C. and Sham, T. -L.},
abstractNote = {This report describes a modification to the elastic-perfectly plastic (EPP) strain limits design method to account for cyclic softening in Gr. 91 steel. The report demonstrates that the unmodified EPP strain limits method described in current ASME code case is not conservative for materials with substantial cyclic softening behavior like Gr. 91 steel. However, the EPP strain limits method can be modified to be conservative for softening materials by using softened isochronous stress-strain curves in place of the standard curves developed from unsoftened creep experiments. The report provides softened curves derived from inelastic material simulations and factors describing the transformation of unsoftened curves to a softened state. Furthermore, the report outlines a method for deriving these factors directly from creep/fatigue tests. If the material softening saturates the proposed EPP strain limits method can be further simplified, providing a methodology based on temperature-dependent softening factors that could be implemented in an ASME code case allowing the use of the EPP strain limits method with Gr. 91. Finally, the report demonstrates the conservatism of the modified method when applied to inelastic simulation results and two bar experiments.},
doi = {10.2172/1375457},
journal = {},
number = ,
volume = ,
place = {United States},
year = 2017,
month = 7
}

Technical Report:

Save / Share:
  • Advanced reactors designed to operate at higher temperatures than current light water reactors require structural materials with high creep strength and creep-fatigue resistance to achieve long design lives. Grade 91 is a ferritic/martensitic steel designed for long creep life at elevated temperatures. It has been selected as a candidate material for sodium fast reactor intermediate heat exchangers and other advanced reactor structural components. This report focuses on the creep deformation and rupture life of Grade 91 steel. The time required to complete an experiment limits the availability of long-life creep data for Grade 91 and other structural materials. Design methodsmore » often extrapolate the available shorter-term experimental data to longer design lives. However, extrapolation methods tacitly assume the underlying material mechanisms causing creep for long-life/low-stress conditions are the same as the mechanisms controlling creep in the short-life/high-stress experiments. A change in mechanism for long-term creep could cause design methods based on extrapolation to be non-conservative. The goal for physically-based microstructural models is to accurately predict material response in experimentally-inaccessible regions of design space. An accurate physically-based model for creep represents all the material mechanisms that contribute to creep deformation and damage and predicts the relative influence of each mechanism, which changes with loading conditions. Ideally, the individual mechanism models adhere to the material physics and not an empirical calibration to experimental data and so the model remains predictive for a wider range of loading conditions. This report describes such a physically-based microstructural model for Grade 91 at 600° C. The model explicitly represents competing dislocation and diffusional mechanisms in both the grain bulk and grain boundaries. The model accurately recovers the available experimental creep curves at higher stresses and the limited experimental data at lower stresses, predominately primary creep rates. The current model considers only one temperature. However, because the model parameters are, for the most part, directly related to the physics of fundamental material processes, the temperature dependence of the properties are known. Therefore, temperature dependence can be included in the model with limited additional effort. The model predicts a mechanism shift for 600° C at approximately 100 MPa from a dislocation- dominated regime at higher stress to a diffusion-dominated regime at lower stress. This mechanism shift impacts the creep life, notch-sensitivity, and, likely, creep ductility of Grade 91. In particular, the model predicts existing extrapolation methods for creep life may be non-conservative when attempting to extrapolate data for higher stress creep tests to low stress, long-life conditions. Furthermore, the model predicts a transition from notchstrengthening behavior at high stress to notch-weakening behavior at lower stresses. Both behaviors may affect the conservatism of existing design methods.« less
  • Grade 91 is a candidate structural material for high temperature advanced reactor applications. Existing ASME Section III, Subsection HB, Subpart B simplified design rules based on elastic analysis are setup as conservative screening tools with the intent to supplement these screening rules with full inelastic analysis when required. The Code provides general guidelines for suitable inelastic models but does not provide constitutive model implementations. This report describes the development of an inelastic constitutive model for Gr. 91 steel aimed at fulfilling the ASME Code requirements and being included into a new Section III Code appendix, HBB-Z. A large database ofmore » over 300 experiments on Gr. 91 was collected and converted to a standard XML form. Five families of Gr. 91 material models were identified in the literature. Of these five, two are potentially suitable for use in the ASME code. These two models were implemented and evaluated against the experimental database. Both models have deficiencies so the report develops a framework for developing and calibrating an improved model. This required creating a new modeling method for representing changes in material rate sensitivity across the full ASME allowable temperature range for Gr. 91 structural components: room temperature to 650° C. On top of this framework for rate sensitivity the report describes calibrating a model for work hardening and softening in the material using genetic algorithm optimization. Future work will focus on improving this trial model by including tension/compression asymmetry observed in experiments and necessary to capture material ratcheting under zero mean stress and by improving the optimization and analysis framework.« less
  • This report summarizes the experiments performed in FY17 on Gr. 91 steels. The testing of Gr. 91 has technical significance because, currently, it is the only approved material for Class A construction that is strongly cyclic softening. Specific FY17 testing includes the following activities for Gr. 91 steel. First, two types of key feature testing have been initiated, including two-bar thermal ratcheting and Simplified Model Testing (SMT). The goal is to qualify the Elastic – Perfectly Plastic (EPP) design methodologies and to support incorporation of these rules for Gr. 91 into the ASME Division 5 Code. The preliminary SMT testmore » results show that Gr. 91 is most damaging when tested with compression hold mode under the SMT creep fatigue testing condition. Two-bar thermal ratcheting test results at a temperature range between 350 to 650o C were compared with the EPP strain limits code case evaluation, and the results show that the EPP strain limits code case is conservative. The material information obtained from these key feature tests can also be used to verify its material model. Second, to provide experimental data in support of the viscoplastic material model development at Argonne National Laboratory, selective tests were performed to evaluate the effect of cyclic softening on strain rate sensitivity and creep rates. The results show the prior cyclic loading history decreases the strain rate sensitivity and increases creep rates. In addition, isothermal cyclic stress-strain curves were generated at six different temperatures, and a nonisothermal thermomechanical testing was also performed to provide data to calibrate the viscoplastic material model.« less
  • This annual status report presents the results of work performed during the third year of the 3-D Inelastic Analysis Methods for Hot Section Components program (NASA Contract NAS3-23697). The objective of the program is to produce a series of new computer codes that permit more accurate and efficient three-dimensional analysis of selected hot section components, i.e., combustor liners, turbine blades, and turbine vanes. The computer codes embody a progression of mathematical models and are streamlined to take advantage of geometrical features, loading conditions, and forms of material response that distinguish each group of selected components. This report is presented inmore » two volumes. Volume 1 describes effort performed under Task 4B, Special Finite Element Special Function Models, while Volume 2 concentrates on Task 4C, Advanced Special Functions Models.« less