skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Conceptual design of a 15-TW pulsed-power accelerator for high-energy-density–physics experiments

Abstract

We have developed a conceptual design of a 15-TW pulsed-power accelerator based on the linear-transformer-driver (LTD) architecture described by Stygar [W. A. Stygar et al., Phys. Rev. ST Accel. Beams 18, 110401 (2015)]. The driver will allow multiple, high-energy-density experiments per day in a university environment and, at the same time, will enable both fundamental and integrated experiments that are scalable to larger facilities. In this design, many individual energy storage units (bricks), each composed of two capacitors and one switch, directly drive the target load without additional pulse compression. Ten LTD modules in parallel drive the load. Each module consists of 16 LTD cavities connected in series, where each cavity is powered by 22 bricks connected in parallel. This design stores up to 2.75 MJ and delivers up to 15 TW in 100 ns to the constant-impedance, water-insulated radial transmission lines. The transmission lines in turn deliver a peak current as high as 12.5 MA to the physics load. To maximize its experimental value and flexibility, the accelerator is coupled to a modern, multibeam laser facility (four beams with up to 5 kJ in 10 ns and one beam with up to 2.6 kJ in 100 ps or less)more » that can provide auxiliary heating of the physics load. The lasers also enable advanced diagnostic techniques such as x-ray Thomson scattering and multiframe and three-dimensional radiography. In conclusion, the coupled accelerator-laser facility will be the first of its kind and be capable of conducting unprecedented high-energy-density-physics experiments.« less

Authors:
 [1];  [1];  [1];  [1];  [2];  [2];  [1];  [2];  [2]
  1. Univ. of Rochester, Rochester, NY (United States). Lab. for Laser Energetics
  2. Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
Publication Date:
Research Org.:
Univ. of Rochester, Rochester, NY (United States). Lab. for Laser Energetics
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA)
OSTI Identifier:
1375444
Grant/Contract Number:
NA0001944
Resource Type:
Journal Article: Accepted Manuscript
Journal Name:
Matter and Radiation at Extremes
Additional Journal Information:
Journal Volume: 2; Journal Issue: 4; Journal ID: ISSN 2468-080X
Publisher:
Science and Technology Information Center, China Academy of Engineering Physics; Elsevier
Country of Publication:
United States
Language:
English
Subject:
47 OTHER INSTRUMENTATION; pulsed power accelerator; high energy density physics; conceptual design

Citation Formats

Spielman, R. B., Froula, D. H., Brent, G., Campbell, E. M., Reisman, D. B., Savage, M. E., Shoup, III, M. J., Stygar, W. A., and Wisher, M. L.. Conceptual design of a 15-TW pulsed-power accelerator for high-energy-density–physics experiments. United States: N. p., 2017. Web. doi:10.1016/j.mre.2017.05.002.
Spielman, R. B., Froula, D. H., Brent, G., Campbell, E. M., Reisman, D. B., Savage, M. E., Shoup, III, M. J., Stygar, W. A., & Wisher, M. L.. Conceptual design of a 15-TW pulsed-power accelerator for high-energy-density–physics experiments. United States. doi:10.1016/j.mre.2017.05.002.
Spielman, R. B., Froula, D. H., Brent, G., Campbell, E. M., Reisman, D. B., Savage, M. E., Shoup, III, M. J., Stygar, W. A., and Wisher, M. L.. Wed . "Conceptual design of a 15-TW pulsed-power accelerator for high-energy-density–physics experiments". United States. doi:10.1016/j.mre.2017.05.002. https://www.osti.gov/servlets/purl/1375444.
@article{osti_1375444,
title = {Conceptual design of a 15-TW pulsed-power accelerator for high-energy-density–physics experiments},
author = {Spielman, R. B. and Froula, D. H. and Brent, G. and Campbell, E. M. and Reisman, D. B. and Savage, M. E. and Shoup, III, M. J. and Stygar, W. A. and Wisher, M. L.},
abstractNote = {We have developed a conceptual design of a 15-TW pulsed-power accelerator based on the linear-transformer-driver (LTD) architecture described by Stygar [W. A. Stygar et al., Phys. Rev. ST Accel. Beams 18, 110401 (2015)]. The driver will allow multiple, high-energy-density experiments per day in a university environment and, at the same time, will enable both fundamental and integrated experiments that are scalable to larger facilities. In this design, many individual energy storage units (bricks), each composed of two capacitors and one switch, directly drive the target load without additional pulse compression. Ten LTD modules in parallel drive the load. Each module consists of 16 LTD cavities connected in series, where each cavity is powered by 22 bricks connected in parallel. This design stores up to 2.75 MJ and delivers up to 15 TW in 100 ns to the constant-impedance, water-insulated radial transmission lines. The transmission lines in turn deliver a peak current as high as 12.5 MA to the physics load. To maximize its experimental value and flexibility, the accelerator is coupled to a modern, multibeam laser facility (four beams with up to 5 kJ in 10 ns and one beam with up to 2.6 kJ in 100 ps or less) that can provide auxiliary heating of the physics load. The lasers also enable advanced diagnostic techniques such as x-ray Thomson scattering and multiframe and three-dimensional radiography. In conclusion, the coupled accelerator-laser facility will be the first of its kind and be capable of conducting unprecedented high-energy-density-physics experiments.},
doi = {10.1016/j.mre.2017.05.002},
journal = {Matter and Radiation at Extremes},
number = 4,
volume = 2,
place = {United States},
year = {Wed Jun 21 00:00:00 EDT 2017},
month = {Wed Jun 21 00:00:00 EDT 2017}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Save / Share:
  • Here, we have developed conceptual designs of two petawatt-class pulsed-power accelerators: Z 300 and Z 800. The designs are based on an accelerator architecture that is founded on two concepts: single-stage electrical-pulse compression and impedance matching [Phys. Rev. ST Accel. Beams 10, 030401 (2007)]. The prime power source of each machine consists of 90 linear-transformer-driver (LTD) modules. Each module comprises LTD cavities connected electrically in series, each of which is powered by 5-GW LTD bricks connected electrically in parallel. (A brick comprises a single switch and two capacitors in series.) Six water-insulated radial-transmission-line impedance transformers transport the power generated bymore » the modules to a six-level vacuum-insulator stack. The stack serves as the accelerator’s water-vacuum interface. The stack is connected to six conical outer magnetically insulated vacuum transmission lines (MITLs), which are joined in parallel at a 10-cm radius by a triple-post-hole vacuum convolute. The convolute sums the electrical currents at the outputs of the six outer MITLs, and delivers the combined current to a single short inner MITL. The inner MITL transmits the combined current to the accelerator’s physics-package load. Z 300 is 35 m in diameter and stores 48 MJ of electrical energy in its LTD capacitors. The accelerator generates 320 TW of electrical power at the output of the LTD system, and delivers 48 MA in 154 ns to a magnetized-liner inertial-fusion (MagLIF) target [Phys. Plasmas 17, 056303 (2010)]. The peak electrical power at the MagLIF target is 870 TW, which is the highest power throughout the accelerator. Power amplification is accomplished by the centrally located vacuum section, which serves as an intermediate inductive-energy-storage device. The principal goal of Z 300 is to achieve thermonuclear ignition; i.e., a fusion yield that exceeds the energy transmitted by the accelerator to the liner. 2D magnetohydrodynamic (MHD) simulations suggest Z 300 will deliver 4.3 MJ to the liner, and achieve a yield on the order of 18 MJ. Z 800 is 52 m in diameter and stores 130 MJ. This accelerator generates 890 TW at the output of its LTD system, and delivers 65 MA in 113 ns to a MagLIF target. The peak electrical power at the MagLIF liner is 2500 TW. The principal goal of Z 800 is to achieve high-yield thermonuclear fusion; i.e., a yield that exceeds the energy initially stored by the accelerator’s capacitors. 2D MHD simulations suggest Z 800 will deliver 8.0 MJ to the liner, and achieve a yield on the order of 440 MJ. Z 300 and Z 800, or variations of these accelerators, will allow the international high-energy-density-physics community to conduct advanced inertial-confinement-fusion, radiation-physics, material-physics, and laboratory-astrophysics experiments over heretofore-inaccessible parameter regimes.« less
  • Abstract not provided.
  • In this study, we have developed a conceptual design of a next-generation pulsed-power accelerator that is optmized for driving megajoule-class dynamic-material-physics experiments at pressures as high as 1 TPa. The design is based on an accelerator architecture that is founded on three concepts: single-stage electrical-pulse compression, impedance matching, and transit-time-isolated drive circuits. Since much of the accelerator is water insulated, we refer to this machine as Neptune. The prime power source of Neptune consists of 600 independent impedance-matched Marx generators. As much as 0.8 MJ and 20 MA can be delivered in a 300-ns pulse to a 16-mΩ physics load;more » hence Neptune is a megajoule-class 20-MA arbitrary waveform generator. Neptune will allow the international scientific community to conduct dynamic equation-of-state, phase-transition, mechanical-property, and other material-physics experiments with a wide variety of well-defined drive-pressure time histories. Because Neptune can deliver on the order of a megajoule to a load, such experiments can be conducted on centimeter-scale samples at terapascal pressures with time histories as long as 1 μs.« less
  • In this study, we have developed a conceptual design of a next-generation pulsed-power accelerator that is optmized for driving megajoule-class dynamic-material-physics experiments at pressures as high as 1 TPa. The design is based on an accelerator architecture that is founded on three concepts: single-stage electrical-pulse compression, impedance matching, and transit-time-isolated drive circuits. Since much of the accelerator is water insulated, we refer to this machine as Neptune. The prime power source of Neptune consists of 600 independent impedance-matched Marx generators. As much as 0.8 MJ and 20 MA can be delivered in a 300-ns pulse to a 16-mΩ physics load;more » hence Neptune is a megajoule-class 20-MA arbitrary waveform generator. Neptune will allow the international scientific community to conduct dynamic equation-of-state, phase-transition, mechanical-property, and other material-physics experiments with a wide variety of well-defined drive-pressure time histories. Because Neptune can deliver on the order of a megajoule to a load, such experiments can be conducted on centimeter-scale samples at terapascal pressures with time histories as long as 1 μs.« less
  • A collaboration has been established between the All-Russian Scientific Research Institute of Experimental Physics (VNIIEF) and the Los Alamos National Laboratory (LANL). In 1992, when emerging governmental policy in the US and Russia began to encourage lab-to-lab interactions, the two institutes quickly recognized a common interest in the technology and applications of magnetic flux compression, the technique for converting the chemical energy released by high-explosives into intense electrical pulses and intensely concentrated magnetic energy. In a period of just over three years, the two institutes have performed more than fifteen joint experiments covering research areas ranging from basic pulsed powermore » technology to solid-state physics to controlled thermonuclear fusion. Using magnetic flux compression generators, electrical currents ranging from 20 to 100 MA were delivered to loads of interest in high-energy-density physics. A 20-MA pulse was delivered to an imploding liner load with a 10--90% rise time of 0.7 {micro}s. A new, high-energy concept for soft X-ray generation was tested at 65 MA. More than 20 MJ of implosion kinetic energy was delivered to a condensed matter imploding liner by a 100-MA current pulse. Magnetic flux compressors were used to determine the upper critical field of a high-temperature superconductor and to create pressure high enough that the transition from single particle behavior to quasimolecular behavior was observed in solid argon. A major step was taken toward the achievement of controlled thermonuclear fusion by a relatively unexplored approach known in Russia as MAGO (MAGnitnoye Obzhatiye, or magnetic compression) and in the US as MTF (Magnetized Target Fusion). Many of the characteristics of a target plasma that produced 10{sup 13} fusion neutrons have been evaluated. Computational models of the target plasma suggest that the plasma is suitable for subsequent compression to fusion conditions by an imploding pusher.« less