Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Thermal Decomposition of Potential Ester Biofuels. Part I: Methyl Acetate and Methyl Butanoate

Journal Article · · Journal of Physical Chemistry. A, Molecules, Spectroscopy, Kinetics, Environment, and General Theory
Two methyl esters have been examined as models for the pyrolysis of biofuels. Dilute samples (0.06 - 0.13%) of methyl acetate (CH3COOCH3) and methyl butanoate (CH3CH2CH2COOCH3) were entrained in (He, Ar) carrier gas and decomposed in a set of flash-pyrolysis micro-reactors. The pyrolysis products resulting from the methyl esters were detected and identified by vacuum ultraviolet photoionization mass spectrometry. Complementary product identification was provided by matrix infrared absorption spectroscopy. Pyrolysis pressures in the pulsed micro-reactor were roughly 20 Torr and residence times through the reactors were approximately 25 - 150 µs. Reactor temperatures of 300 – 1600 K were explored. Decomposition of CH3COOCH3 commences at 1000 K and the initial products are (CH2=C=O and CH3OH). As the micro-reactor is heated to 1300 K, a mixture of (CH2=C=O and CH3OH, CH3, CH2=O, H, CO, CO2) appears. The thermal cracking of CH3CH2CH2COOCH3 begins at 800 K with the formation of (CH3CH2CH=C=O, CH3OH). By 1300 K, the pyrolysis of methyl butanoate yields a complex mixture of (CH3CH2CH=C=O, CH3OH, CH3, CH2=O, CO, CO2, CH3CH=CH2, CH2CHCH2, CH2=C=CH2, HCCCH2, CH2=C=C=O, CH2=CH2, HCΞCH, CH2=C=O). Based on the results from the thermal cracking of methyl acetate and methyl butanoate, we predict several important decomposition channels for the pyrolysis of fatty acid methyl esters, R CH2-COOCH3. The lowest energy fragmentation will be a 4-center elimination of methanol to form the ketene, RCH=C=O. At higher temperatures, concerted fragmentation to radicals will ensue to produce a mixture of species: (RCH2 + CO2 + CH3) and (RCH2 + CO + CH2=O + H). Thermal cracking of the β C-C bond of the methyl ester will generate the radicals (R and H) as well as CH2=C=O + CH2=O. The thermochemistry of methyl acetate and its fragmentation products have been obtained via the Active Thermochemical Tables (ATcT) approach, resulting in ΔfH298(CH3COOCH3) = -98.7 ± 0.2 kcal mol-1, ΔfH298(CH3CO2) = -45.7 ± 0.3 kcal mol-1, and ΔfH298(COOCH3) = -38.3 ± 0.4 kcal mol-1.
Research Organization:
Argonne National Laboratory (ANL)
Sponsoring Organization:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
DOE Contract Number:
AC02-06CH11357
OSTI ID:
1373898
Journal Information:
Journal of Physical Chemistry. A, Molecules, Spectroscopy, Kinetics, Environment, and General Theory, Journal Name: Journal of Physical Chemistry. A, Molecules, Spectroscopy, Kinetics, Environment, and General Theory Journal Issue: 24 Vol. 121; ISSN 1089-5639
Publisher:
American Chemical Society
Country of Publication:
United States
Language:
English

Similar Records

Isomerization and Fragmentation of Cyclohexanone in a Heated Micro-Reactor
Journal Article · Sun Nov 29 19:00:00 EST 2015 · Journal of Physical Chemistry. A, Molecules, Spectroscopy, Kinetics, Environment, and General Theory · OSTI ID:1439183

Erratum : Ionization energy of methylene revisited : improved values for the enthalpy of formation of CH{sub 2} and the bond dissociation Energy of CH{3} via simultaneous solution of the local thermochemical network.
Journal Article · Thu Dec 31 23:00:00 EST 1998 · J. Phys. Chem. A · OSTI ID:943007

Pyrolysis of the Simplest Carbohydrate, Glycolaldehyde (CHO-CH2OH), and Glyoxal in a Heated Microreactor
Journal Article · Tue Mar 15 20:00:00 EDT 2016 · Journal of Physical Chemistry. A, Molecules, Spectroscopy, Kinetics, Environment, and General Theory · OSTI ID:1464135