skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Many-Body Interactions in Ice

Abstract

Many-body effects in ice are investigated through a systematic analysis of the lattice energies of several proton ordered and disordered phases, which are calculated with different flexible water models, ranging from pairwise additive (q-TIP4P/F) to polarizable (TTM3-F and AMOE-BA BA) and explicit many-body (MB-pol) potential energy functions. Comparisons with available experimental and diffusion Monte Carlo data emphasize the importance of an accurate description of the individual terms of the many-body expansion of the interaction energy between water molecules for the correct prediction of the energy ordering of the ice phases. Further analysis of the MB-pol results, in terms of fundamental energy contributions, demonstrates that the differences in lattice energies between different ice phases are sensitively dependent on the subtle balance between short-range two-body and three-body interactions, many-body induction, and dispersion energy. Here, by correctly reproducing many-body effects at both short range and long range, it is found that MB-pol accurately predicts the energetics of different ice phases, which provides further support for the accuracy of MB-pol in representing the properties of water from the gas to the condensed phase.

Authors:
 [1];  [1];  [1]; ORCiD logo [2]; ORCiD logo [1]
  1. Univ. of California - San Diego, La Jolla, CA (United States)
  2. Argonne National Lab. (ANL), Argonne, IL (United States)
Publication Date:
Research Org.:
Argonne National Lab. (ANL), Argonne, IL (United States)
Sponsoring Org.:
National Science Foundation (NSF); Argonne National Laboratory, Argonne Leadership Computing Facility
OSTI Identifier:
1373735
Grant/Contract Number:
AC02-06CH11357
Resource Type:
Journal Article: Accepted Manuscript
Journal Name:
Journal of Chemical Theory and Computation
Additional Journal Information:
Journal Volume: 13; Journal Issue: 4; Journal ID: ISSN 1549-9618
Publisher:
American Chemical Society
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY

Citation Formats

Pham, C. Huy, Reddy, Sandeep K., Chen, Karl, Knight, Chris, and Paesani, Francesco. Many-Body Interactions in Ice. United States: N. p., 2017. Web. doi:10.1021/acs.jctc.6b01248.
Pham, C. Huy, Reddy, Sandeep K., Chen, Karl, Knight, Chris, & Paesani, Francesco. Many-Body Interactions in Ice. United States. doi:10.1021/acs.jctc.6b01248.
Pham, C. Huy, Reddy, Sandeep K., Chen, Karl, Knight, Chris, and Paesani, Francesco. Tue . "Many-Body Interactions in Ice". United States. doi:10.1021/acs.jctc.6b01248. https://www.osti.gov/servlets/purl/1373735.
@article{osti_1373735,
title = {Many-Body Interactions in Ice},
author = {Pham, C. Huy and Reddy, Sandeep K. and Chen, Karl and Knight, Chris and Paesani, Francesco},
abstractNote = {Many-body effects in ice are investigated through a systematic analysis of the lattice energies of several proton ordered and disordered phases, which are calculated with different flexible water models, ranging from pairwise additive (q-TIP4P/F) to polarizable (TTM3-F and AMOE-BA BA) and explicit many-body (MB-pol) potential energy functions. Comparisons with available experimental and diffusion Monte Carlo data emphasize the importance of an accurate description of the individual terms of the many-body expansion of the interaction energy between water molecules for the correct prediction of the energy ordering of the ice phases. Further analysis of the MB-pol results, in terms of fundamental energy contributions, demonstrates that the differences in lattice energies between different ice phases are sensitively dependent on the subtle balance between short-range two-body and three-body interactions, many-body induction, and dispersion energy. Here, by correctly reproducing many-body effects at both short range and long range, it is found that MB-pol accurately predicts the energetics of different ice phases, which provides further support for the accuracy of MB-pol in representing the properties of water from the gas to the condensed phase.},
doi = {10.1021/acs.jctc.6b01248},
journal = {Journal of Chemical Theory and Computation},
number = 4,
volume = 13,
place = {United States},
year = {Tue Feb 28 00:00:00 EST 2017},
month = {Tue Feb 28 00:00:00 EST 2017}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 5works
Citation information provided by
Web of Science

Save / Share:
  • The MB-pol many-body potential has recently emerged as an accurate molecular model for water simulations from the gas to the condensed phase. Here, the accuracy of MB-pol is systematically assessed across the three phases of water through extensive comparisons with experimental data and high-level ab initio calculations. Individual many-body contributions to the interaction energies as well as vibrational spectra of water clusters calculated with MB-pol are in excellent agreement with reference data obtained at the coupled cluster level. We investigate several structural, thermodynamic, and dynamical properties of the liquid phase at atmospheric pressure through classical molecular dynamics simulations as amore » function of temperature. Furthermore, the structural properties of the liquid phase are in nearly quantitative agreement with X-ray diffraction data available over the temperature range from 268 to 368 K. The analysis of other thermodynamic and dynamical quantities emphasizes the importance of explicitly including nuclear quantum effects in the simulations, especially at low temperature, for a physically correct description of the properties of liquid water. Furthermore, both densities and lattice energies of several ice phases are also correctly reproduced by MB-pol. Following a recent study of DFT models for water, a score is assigned to each computed property, which demonstrates the high and, in many respects, unprecedented accuracy of MB-pol in representing all three phases of water.« less
  • We study a spin-gas model, where N{sub S} system qubits are interacting with N{sub B} bath qubits via many-body interactions. We consider multipartite Ising interactions and show how the effect of decoherence depends on the specific coupling between the system and its environment. For instance, we analyze the influence of decoherence induced by k-body interactions for different values of k. Moreover, we study how the effect of decoherence depends on the correlation between bath qubits that are coupled to different individual system qubits and compare Markovian with non-Markovian scenarios. We derive a useful canonical form of a completely positive mapmore » that describes a class of system environment interactions with a finite size of environment correlations. As examples we consider specific quantum many-body states and investigate their evolution under different decoherence models. As a complementary investigation, we study how the coupling to the environment can be employed to generate a desired multipartite state.« less
  • Ice Ih is arguably the most important molecular crystal in nature, yet our understanding of its structural and dynamical properties is still incomplete. To explain the origin of two peaks in the hydrogen-bond-stretching region of the inelastic neutron scattering (INS) spectra, the existence of two types of hydrogen bonds with strengths differing by a factor of two was previously hypothesized. We present first-principles calculations based on diagrammatic many-body perturbation theory of the structures and vibrational spectra of ice Ih, which suggest that the observed spectral features arise from the directionality or anisotropy of the hydrogen-bond stretching vibrations rather than theirmore » vastly different force constants, disproving the previous hypothesis. Our calculations also reproduce the infrared and Raman spectra, the variation of INS spectra with deuterium concentration, and the anomaly of heat capacities at low temperatures, together rendering our calculations a paradigm for "crystals from first principles" as envisioned by Maddox.« less
  • The MB-pol many-body potential has recently emerged as an accurate molecular model for water simulations from the gas to the condensed phase. In this study, the accuracy of MB-pol is systematically assessed across the three phases of water through extensive comparisons with experimental data and high-level ab initio calculations. Individual many-body contributions to the interaction energies as well as vibrational spectra of water clusters calculated with MB-pol are in excellent agreement with reference data obtained at the coupled cluster level. Several structural, thermodynamic, and dynamical properties of the liquid phase at atmospheric pressure are investigated through classical molecular dynamics simulationsmore » as a function of temperature. The structural properties of the liquid phase are in nearly quantitative agreement with X-ray diffraction data available over the temperature range from 268 to 368 K. The analysis of other thermodynamic and dynamical quantities emphasizes the importance of explicitly including nuclear quantum effects in the simulations, especially at low temperature, for a physically correct description of the properties of liquid water. Furthermore, both densities and lattice energies of several ice phases are also correctly reproduced by MB-pol. Following a recent study of DFT models for water, a score is assigned to each computed property, which demonstrates the high and, in many respects, unprecedented accuracy of MB-pol in representing all three phases of water. Published by AIP Publishing.« less
  • The structure, equation of state, IR, Raman, and inelastic neutron scattering (INS) spectra of high-pressure, proton-ordered phase VIII of ice are calculated by the second-order many-body perturbation and coupled-cluster singles and doubles methods. Nearly all the observed features of the pressure-dependence of the structures and spectra are reproduced computationally up to 60 GPa insofar as the anharmonic effects can be neglected. The calculations display no sign of the hypothetical isostructural transition in 2–3 GPa to phase VIII{sup ′}, the existence of which has been a matter of controversy for over a decade, while they do not contradict the interpretation ofmore » the spectral anomaly at 10–14 GPa as a precursor of the VIII-X phase transition. The calculated INS spectra correct a systematic error in the peak positions of the observed spectra.« less