skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Electrolyte additive enabled fast charging and stable cycling lithium metal batteries

Abstract

Batteries using lithium (Li) metal as anodes are considered promising energy storage systems because of their high energy densities. However, safety concerns associated with dendrite growth along with limited cycle life, especially at high charge current densities, hinder their practical uses. Here we report that an optimal amount (0.05 M) of LiPF6 as an additive in LiTFSI-LiBOB dual-salt/carbonate-solvent-based electrolytes significantly enhances the charging capability and cycling stability of Li metal batteries. In a Li metal battery using a 4-V Li-ion cathode at a moderately high loading of 1.75mAh cm(-2), a cyclability of 97.1% capacity retention after 500 cycles along with very limited increase in electrode overpotential is accomplished at a charge/discharge current density up to 1.75 mA cm(-2). The fast charging and stable cycling performances are ascribed to the generation of a robust and conductive solid electrolyte interphase at the Li metal surface and stabilization of the Al cathode current collector.

Authors:
ORCiD logo; ORCiD logo; ; ; ; ORCiD logo;
Publication Date:
Research Org.:
Argonne National Lab. (ANL), Argonne, IL (United States)
Sponsoring Org.:
USDOE Office of Energy Efficiency and Renewable Energy (EERE) - Office of Vehicle Technology
OSTI Identifier:
1372399
DOE Contract Number:  
AC02-06CH11357
Resource Type:
Journal Article
Journal Name:
Nature Energy
Additional Journal Information:
Journal Volume: 2; Journal Issue: 3; Journal ID: ISSN 2058-7546
Publisher:
Nature Publishing Group
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE; 36 MATERIALS SCIENCE; Li metal batteries; LiPF6 additive; LiTFSI-LiBOB dual-salt; charging capability; cycling stability

Citation Formats

Zheng, Jianming, Engelhard, Mark H., Mei, Donghai, Jiao, Shuhong, Polzin, Bryant J., Zhang, Ji-Guang, and Xu, Wu. Electrolyte additive enabled fast charging and stable cycling lithium metal batteries. United States: N. p., 2017. Web. doi:10.1038/nenergy.2017.12.
Zheng, Jianming, Engelhard, Mark H., Mei, Donghai, Jiao, Shuhong, Polzin, Bryant J., Zhang, Ji-Guang, & Xu, Wu. Electrolyte additive enabled fast charging and stable cycling lithium metal batteries. United States. doi:10.1038/nenergy.2017.12.
Zheng, Jianming, Engelhard, Mark H., Mei, Donghai, Jiao, Shuhong, Polzin, Bryant J., Zhang, Ji-Guang, and Xu, Wu. Wed . "Electrolyte additive enabled fast charging and stable cycling lithium metal batteries". United States. doi:10.1038/nenergy.2017.12.
@article{osti_1372399,
title = {Electrolyte additive enabled fast charging and stable cycling lithium metal batteries},
author = {Zheng, Jianming and Engelhard, Mark H. and Mei, Donghai and Jiao, Shuhong and Polzin, Bryant J. and Zhang, Ji-Guang and Xu, Wu},
abstractNote = {Batteries using lithium (Li) metal as anodes are considered promising energy storage systems because of their high energy densities. However, safety concerns associated with dendrite growth along with limited cycle life, especially at high charge current densities, hinder their practical uses. Here we report that an optimal amount (0.05 M) of LiPF6 as an additive in LiTFSI-LiBOB dual-salt/carbonate-solvent-based electrolytes significantly enhances the charging capability and cycling stability of Li metal batteries. In a Li metal battery using a 4-V Li-ion cathode at a moderately high loading of 1.75mAh cm(-2), a cyclability of 97.1% capacity retention after 500 cycles along with very limited increase in electrode overpotential is accomplished at a charge/discharge current density up to 1.75 mA cm(-2). The fast charging and stable cycling performances are ascribed to the generation of a robust and conductive solid electrolyte interphase at the Li metal surface and stabilization of the Al cathode current collector.},
doi = {10.1038/nenergy.2017.12},
journal = {Nature Energy},
issn = {2058-7546},
number = 3,
volume = 2,
place = {United States},
year = {2017},
month = {3}
}

Works referenced in this record:

Improved Cycle Life and Stability of Lithium Metal Anodes through Ultrathin Atomic Layer Deposition Surface Treatments
journal, September 2015


XPS analysis of the SEI formed on carbonaceous materials
journal, May 2004


Ultrathin Two-Dimensional Atomic Crystals as Stable Interfacial Layer for Improvement of Lithium Metal Anode
journal, September 2014

  • Yan, Kai; Lee, Hyun-Wook; Gao, Teng
  • Nano Letters, Vol. 14, Issue 10
  • DOI: 10.1021/nl503125u

An Artificial Solid Electrolyte Interphase Layer for Stable Lithium Metal Anodes
journal, December 2015


Effects of Carbonate Solvents and Lithium Salts on Morphology and Coulombic Efficiency of Lithium Electrode
journal, January 2013

  • Ding, Fei; Xu, Wu; Chen, Xilin
  • Journal of The Electrochemical Society, Vol. 160, Issue 10
  • DOI: 10.1149/2.100310jes

Suppression of Lithium Dendrite Growth Using Cross-Linked Polyethylene/Poly(ethylene oxide) Electrolytes: A New Approach for Practical Lithium-Metal Polymer Batteries
journal, May 2014

  • Khurana, Rachna; Schaefer, Jennifer L.; Archer, Lynden A.
  • Journal of the American Chemical Society, Vol. 136, Issue 20
  • DOI: 10.1021/ja502133j

Dendrite-Free Lithium Deposition Induced by Uniformly Distributed Lithium Ions for Efficient Lithium Metal Batteries
journal, February 2016

  • Cheng, Xin-Bing; Hou, Ting-Zheng; Zhang, Rui
  • Advanced Materials, Vol. 28, Issue 15
  • DOI: 10.1002/adma.201506124

Dendrite-Free Lithium Deposition via Self-Healing Electrostatic Shield Mechanism
journal, March 2013

  • Ding, Fei; Xu, Wu; Graff, Gordon L.
  • Journal of the American Chemical Society, Vol. 135, Issue 11, p. 4450-4456
  • DOI: 10.1021/ja312241y

Application of the N-propyl-N-methyl-pyrrolidinium Bis(fluorosulfonyl)imide RTIL Containing Lithium Bis(fluorosulfonyl)imide in Ionic Liquid Based Lithium Batteries
journal, January 2010

  • Bhatt, Anand I.; Best, Adam S.; Huang, Junhua
  • Journal of The Electrochemical Society, Vol. 157, Issue 1
  • DOI: 10.1149/1.3257978

Selective deposition and stable encapsulation of lithium through heterogeneous seeded growth
journal, February 2016

  • Yan, Kai; Lu, Zhenda; Lee, Hyun-Wook
  • Nature Energy, Vol. 1, Issue 3, Article No. 16010
  • DOI: 10.1038/nenergy.2016.10

Failure Mechanism for Fast-Charged Lithium Metal Batteries with Liquid Electrolytes
journal, September 2014

  • Lu, Dongping; Shao, Yuyan; Lozano, Terence
  • Advanced Energy Materials, Vol. 5, Issue 3
  • DOI: 10.1002/aenm.201400993

On the use of vinylene carbonate (VC) as an additive to electrolyte solutions for Li-ion batteries
journal, February 2002


Characterization of Lithium Alkyl Carbonates by X-ray Photoelectron Spectroscopy: Experimental and Theoretical Study
journal, August 2005

  • Dedryvère, R.; Gireaud, L.; Grugeon, S.
  • The Journal of Physical Chemistry B, Vol. 109, Issue 33
  • DOI: 10.1021/jp051626k

Nonaqueous Liquid Electrolytes for Lithium-Based Rechargeable Batteries
journal, October 2004


The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors
journal, October 1970


A highly reversible room-temperature lithium metal battery based on crosslinked hairy nanoparticles
journal, December 2015

  • Choudhury, Snehashis; Mangal, Rahul; Agrawal, Akanksha
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms10101

Surface chemistry and morphology of the solid electrolyte interphase on silicon nanowire lithium-ion battery anodes
journal, April 2009


Stabilizing lithium metal using ionic liquids for long-lived batteries
journal, June 2016

  • Basile, A.; Bhatt, A. I.; O’Mullane, A. P.
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms11794

Layered reduced graphene oxide with nanoscale interlayer gaps as a stable host for lithium metal anodes
journal, March 2016

  • Lin, Dingchang; Liu, Yayuan; Liang, Zheng
  • Nature Nanotechnology, Vol. 11, Issue 7
  • DOI: 10.1038/nnano.2016.32

Chemical Reactivity of PF[sub 5] and LiPF[sub 6] in Ethylene Carbonate/Dimethyl Carbonate Solutions
journal, January 2001

  • Sloop, S. E.; Pugh, J. K.; Wang, S.
  • Electrochemical and Solid-State Letters, Vol. 4, Issue 4
  • DOI: 10.1149/1.1353158

Interconnected hollow carbon nanospheres for stable lithium metal anodes
journal, July 2014

  • Zheng, Guangyuan; Lee, Seok Woo; Liang, Zheng
  • Nature Nanotechnology, Vol. 9, Issue 8
  • DOI: 10.1038/nnano.2014.152

Analysis of Vinylene Carbonate Derived SEI Layers on Graphite Anode
journal, January 2004

  • Ota, Hitoshi; Sakata, Yuuichi; Inoue, Atsuyoshi
  • Journal of The Electrochemical Society, Vol. 151, Issue 10
  • DOI: 10.1149/1.1785795

Stable lithium electrodeposition in liquid and nanoporous solid electrolytes
journal, August 2014

  • Lu, Yingying; Tu, Zhengyuan; Archer, Lynden A.
  • Nature Materials, Vol. 13, Issue 10
  • DOI: 10.1038/nmat4041

High rate and stable cycling of lithium metal anode
journal, February 2015

  • Qian, Jiangfeng; Henderson, Wesley A.; Xu, Wu
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms7362