Tailoring high-temperature radiation and the resurrection of the incandescent source
Journal Article
·
· Nature Nanotechnology
- Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States). Research Lab. of Electronics
- Purdue Univ., West Lafayette, IN (United States). School of Electrical and Computer Engineering. Birck Nanotechnology Center
- Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States). Dept. of Mechanical Engineering
In solar cells, the mismatch between the Sun's emission spectrum and the cells’ absorption profile limits the efficiency of such devices, while in incandescent light bulbs, most of the energy is lost as heat. One way to avoid the waste of a large fraction of the radiation emitted from hot objects is to tailor the thermal emission spectrum according to the desired application. This strategy has been successfully applied to photonic-crystal emitters at moderate temperatures, but is exceedingly difficult for hot emitters (>1,000 K). Here, we show that a plain incandescent tungsten filament (3,000 K) surrounded by a cold-side nanophotonic interference system optimized to reflect infrared light and transmit visible light for a wide range of angles could become a light source that reaches luminous efficiencies (~40%) surpassing existing lighting technologies, and nearing a limit for lighting applications. We experimentally demonstrate a proof-of-principle incandescent emitter with efficiency approaching that of commercial fluorescent or light-emitting diode bulbs, but with exceptional reproduction of colours and scalable power. The ability to tailor the emission spectrum of high-temperature sources may find applications in thermophotovoltaic energy conversion and lighting.
- Research Organization:
- Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)
- Sponsoring Organization:
- USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
- Grant/Contract Number:
- SC0001299
- OSTI ID:
- 1371442
- Alternate ID(s):
- OSTI ID: 1387747
- Journal Information:
- Nature Nanotechnology, Journal Name: Nature Nanotechnology Journal Issue: 4 Vol. 11; ISSN 1748-3387
- Publisher:
- Nature Publishing GroupCopyright Statement
- Country of Publication:
- United States
- Language:
- English
Similar Records
Combined selective emitter and filter for high performance incandescent lighting
High efficiency incandescent lighting
Recent developments in high-temperature photonic crystals for energy conversion
Journal Article
·
Thu Aug 31 20:00:00 EDT 2017
· Applied Physics Letters
·
OSTI ID:1378450
High efficiency incandescent lighting
Patent
·
Tue Sep 02 00:00:00 EDT 2014
·
OSTI ID:1151831
Recent developments in high-temperature photonic crystals for energy conversion
Journal Article
·
Thu Aug 23 20:00:00 EDT 2012
· Energy & Environmental Science
·
OSTI ID:1386823