An allosteric photoredox catalyst inspired by photosynthetic machinery
- Northwestern Univ., Evanston, IL (United States)
Biological photosynthetic machinery allosterically regulate light harvesting via conformational and electronic changes at the antenna protein complexes as a response to specific chemical inputs. Fundamental limitations in current approaches to regulating inorganic light-harvesting mimics prevent their use in catalysis. Here we show that a light-harvesting antenna/reaction centre mimic can be regulated by utilizing a coordination framework incorporating antenna hemilabile ligands and assembled via a high-yielding, modular approach. As in nature, allosteric regulation is afforded by coupling the conformational changes to the disruptions in the electrochemical landscape of the framework upon recognition of specific coordinating analytes. The hemilabile ligands enable switching using remarkably mild and redox-inactive inputs, allowing one to regulate the photoredox catalytic activity of the photosynthetic mimic reversibly and in situ. Furthermore, we demonstrate that bioinspired regulatory mechanisms can be applied to inorganic light-harvesting arrays displaying switchable catalytic properties and with potential uses in solar energy conversion and photonic devices.
- Research Organization:
- Energy Frontier Research Centers (EFRC), Washington, D.C. (United States). Argonne-Northwestern Solar Energy Research Center (ANSER)
- Sponsoring Organization:
- USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
- Grant/Contract Number:
- SC0001059
- OSTI ID:
- 1370514
- Journal Information:
- Nature Communications, Journal Name: Nature Communications Vol. 6; ISSN 2041-1723
- Publisher:
- Nature Publishing GroupCopyright Statement
- Country of Publication:
- United States
- Language:
- English
Similar Records
Cooperative Electronic and Structural Regulation in a Bioinspired Allosteric Photoredox Catalyst
SANS Investigation of the Photosynthetic Machinery of Chloroflexus Aurantiacus
Journal Article
·
Mon May 09 20:00:00 EDT 2016
· Inorganic Chemistry
·
OSTI ID:1388175
SANS Investigation of the Photosynthetic Machinery of Chloroflexus Aurantiacus
Journal Article
·
Thu Dec 31 23:00:00 EST 2009
· Biophysical Journal
·
OSTI ID:992105
Related Subjects
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY
bio-inspired
catalysis (heterogeneous)
catalysis (homogeneous)
charge transport
defects
electrodes - solar
hydrogen and fuel cells
materials and chemistry by design
membrane
optics
photosynthesis (natural and artificial)
solar (fuels)
solar (photovoltaic)
spin dynamics
synthesis (novel materials)
synthesis (self-assembly)
bio-inspired
catalysis (heterogeneous)
catalysis (homogeneous)
charge transport
defects
electrodes - solar
hydrogen and fuel cells
materials and chemistry by design
membrane
optics
photosynthesis (natural and artificial)
solar (fuels)
solar (photovoltaic)
spin dynamics
synthesis (novel materials)
synthesis (self-assembly)